摘要:
Various embodiments can utilize a distributed solution for scheduling connections between peers in a file sharing environment. In accordance with at least some embodiments, individual nodes in a peer-to-peer system include scheduling software that enables the nodes to make scheduling decisions with regard to how, when and where connections are made with other peers. Scheduling decisions can be based on a number of different parameters. In at least some embodiments, a synchronization negotiation manager is embodied with logic that drives the negotiation and scheduling process. This logic is represented by an innovative state machine that is designed to implement the negotiation and synchronization process.
摘要:
Content synchronization in a file sharing environment is described. A node in a circle share maintains a version vector that represents that node's knowledge of file synchronization events. Version vector data may be transmitted between nodes of the circle share via a presence service in the form of short notification messages. The version vector data is compared to identify one or more nodes to be synchronized. A resource-aware overlay representing the circle share is computed, and is used to initiate communication to determine which of the available nodes with which to synchronize will provide the most synchronization value to other nodes in the circle share.
摘要:
Content synchronization in a file sharing environment is described. A node in a circle share maintains a version vector that represents that node's knowledge of file synchronization events. Version vector data may be transmitted between nodes of the circle share via a presence service in the form of short notification messages. The version vector data is compared to identify one or more nodes to be synchronized. A resource-aware overlay representing the circle share is computed, and is used to initiate communication to determine which of the available nodes with which to synchronize will provide the most synchronization value to other nodes in the circle share.
摘要:
A method and system that enhances a user's performance while interacting with an interactive internet application such as a Massively Multiplayer Online (MMO) game is provided. The network latency experienced by users participating in the MMO game is minimized by dynamically determining an optimal transmission action for a message generated by the MMO game. In one embodiment, determining the optimal transmission action for a message includes dynamically determining the optimal number of redundant Forward Error Correction (FEC) packets to add to a message prior to transmitting a message to a receiving device. The optimal number of FEC packets is determined based on a wide range of varying network conditions.
摘要:
Implementation of hybrid peer-to-peer streaming with server assistance is described. In one implementation, a media source is selected from amongst a plurality of media sources for retrieval of streaming media content. The selection might be based, for example, on an amount of the streaming media content received at respective time units. In one scenario, if the amount received at a time unit is less than a target amount, the streaming media content is retrieved from at least one streaming media server. Conversely, if the amount received at a time unit is more than the target amount, the streaming media content is retrieved from at least one peer-to-peer network. In another embodiment, a playback buffer is monitored to determine an amount of streaming media content at the respective time units. The media source is then selected based on the amount of the streaming media content in the playback buffer.
摘要:
A method and system that enhances a user's performance while interacting with an interactive internet application such as a Massively Multiplayer Online (MMO) game is provided. The network latency experienced by users participating in the MMO game is minimized by dynamically determining an optimal transmission action for a message generated by the MMO game. In one embodiment, determining the optimal transmission action for a message includes dynamically determining the optimal number of redundant Forward Error Correction (FEC) packets to add to a message prior to transmitting a message to a receiving device. The optimal number of FEC packets is determined based on a wide range of varying network conditions.
摘要:
A template and/or knowledge associated with a synchronous meeting are obtained by a computing device. The computing device then adaptively manages the synchronous meeting based at least in part on the template and/or knowledge.
摘要:
The described implementations relate to distributed network management and more particularly to enhancing distributed network utility. One technique selects multiple trees to distribute content to multiple receivers in a session where individual receivers can receive the distributed content at one of a plurality of rates. The technique further adjustably allocates content distribution across the multiple trees to increase a sum of utilities of the multiple receivers.
摘要:
Difficulties associated with choosing advantageous network routes between server and clients are mitigated by a routing system that is devised to use many routing path sets, where respective sets comprise a number of routing paths covering all of the clients, including through other clients. A server may then apportion a data stream among all of the routing path sets. The server may also detect the performance of the computer network while sending the data stream between clients, and may adjust the apportionment of the routing path sets including the route. The clients may also be configured to operate as servers of other data streams, such as in a videoconferencing session, for example, and may be configured to send detected route performance information along with the portions of the various data streams.
摘要:
A content distribution method and system for distributing content over a peer-to-peer network such that the full potential throughput of the network is achieved. The content distribution method divides the content to be distributed into many small blocks. Each of the content blocks then is assigned to a node, which can be a content-requesting node, a non-content-requesting node or a source node. Content is assigned based on a capacity of the node, where nodes having a larger capacity are assigned a greater number of content blocks and nodes having a smaller capacity are assigned a fewer content blocks. The capacity generally is defined as the upload bandwidth of the node. Redistribution queues are employed to control the throughput of the distribution. This bandwidth control strategy ensures that upload bandwidths of the peer and source nodes are fully utilized even with network anomalies such as packet losses and delivery jitters.