摘要:
The present invention relates to an antidegradant system comprised of (A) an antidegradant selected from the group consisting of phenolic antidegradants, amine antidegradants and mixtures thereof; and (B) a unique polymerizable synergist. In addition, there is disclosed a stabilized polymer comprising (A) a polymer selected from the group consisting of (1) homopolymers and copolymers of monoolefins; (2) natural rubber; and (3) synthetic rubber derived from a diene monomer; (B) from about 0.05 to about 10 parts by weight based upon 100 parts of polymer of an antidegradant selected from the group consisting of phenolic antidegradants, amine antidegradants and mixtures thereof; and (C) from about 0.05 to about 20 parts by weight based upon 100 parts of polymer of a unique polymerizable aromatic sulfide synergist.
摘要:
The present invention relates to a process for preparing a masterbatch rubber containing polymer bound functionalized moieties. The process comprises the emulsion polymerization at a temperature from 40.degree. C. to 100.degree. C. of (a) at least one functionalized monomer that contains a polymerizable vinyl group; with (b) at least one copolymerizable conjugated diene monomer selected from the group consisting of butadiene-1,3,2 chlorobutadiene-1,3, isoprene, piperylene and conjugated hexadienes, wherein the polymerization is conducted in the presence of from (1) from 2 to 30 parts by weight of an ionic surfactant per 100 parts by weight of organic components and (2) about 10 to about 70 parts by weight of a plasticizer based on 100 parts by weight of total monomers. Other than the water, ionic surfactant, and the copolymerizable conjugated diene, the plasticizer functions as the sole solvent for the functionalized monomer during the emulsion polymerization and additionally functions as a plasticizer for the final polymer product.
摘要:
The present invention relates to a process for preparing a rubber containing polymer bound functionalities. The process comprises the emulsion polymerization at a temperature ranging from about 0.degree. C. to about 25.degree. C. of (a) at least one functionalized monomer that contains a polymerizable vinyl group; with (b) at least one copolymerizable conjugated diene monomer selected from the group consisting of butadiene 1,3, 2-chlorobutadiene-1,3, isoprene, piperylene and conjugated hexadienes; wherein the polymerization is conducted in the presence of from (1) from 2 to 30 parts by weight of an ionic surfactant per 100 parts by weight of organic components and (2) about 1 to about 70 parts by weight of a plasticizer based on 100 parts by weight of total monomers. Other than the water, ionic surfactant, and the copolymerizable conjugated diene, the plasticizer functions as the sole solvent agent for the functionalized monomer during the emulsion polymerization and additionally functions as a plasticizer for the final polymer product.
摘要:
The present invention relates to a process for preparing a rubber containing polymer bound antidegradants. The process comprises the aqueous emulsion polymerization of (a) at least one functionalized monomer that contains an antidegradant moiety and a polymerizable vinyl group; with (b) at least one copolymerizable conjugated diene monomer, wherein the polymerization is conducted in the presence of from about 1 to about 70 parts by weight of an ester based on 100 parts by weight of total monomers. The ester functions as a synergist for the antidegradant, as a cosolvent/dispersing agent for the antidegradant during emulsion polymerization and as a plasticizer for the final polymer product.
摘要:
The present invention relates to a modified asphalt cement containing from about 90 to about 99 parts by dry weight of an asphalt cement and from about 1 to about 10 parts by dry weight of a rubber latex having a weight average molecular weight of less than 250,000 and a Mooney viscosity ranging from about 4 to 17. The latex is a random polymer comprising from about 65 to about 85 weight percent of at least one C.sub.4 -C.sub.6 conjugated diolefin and from about 15 to about 35 weight percent of styrene. The latex polymer is highly compatible with the asphalt cement without sacrificing many of the other desirable physical properties.
摘要:
An addition polymer of a water insoluble soft monomer, a water soluble anionic monomer and, optionally, a water soluble nonionic monomer and water insoluble hard monomer is neutralized to at least about 75%, and formed into a sheet. A laundry care additive, as a bleach, may be stored between a pair of opposed heat sealed sheets to provide a laundry care product adapted to be introduced into a laundry wash.
摘要:
An addition polymer of a water insoluble soft monomer, a water soluble anionic monomer and, optionally, a water soluble nonionic monomer and water insoluble hard monomer is neutralized to at least about 75%, and formed into a sheet. A laundry care additive, as a bleach, may be stored between a pair of opposed heat sealed sheets to provide a laundry care product adapted to be introduced into a laundry wash.
摘要:
It has been determined that rubbery terpolymers of a conjugated diolefin monomer, a vinyl aromatic monomer, and N-(isobutoxymethyl) acrylamide (IBMA) tan be used to modify asphalt cement to greatly enhance the resistance to shoving, rutting, and low temperature cracking of asphalt concretes made therewith. These rubbery polymers have a Mooney viscosity which is within the range of about 35 to about 80. It has further been determined that these rubbery terpolymers are compatible with virtually all types of asphalt. It is particularly preferred for the rubbery polymers of this invention to also contain repeat units which are derived from hydroxypropyl methacrylate (HPMA). The subject invention more specifically relates to a modified asphalt cement which is comprised of (1) from about 90 weight percent to about 99 weight percent of asphalt; and (2) from about 1 weight percent to about 10 weight percent of a rubbery polymer which is comprised of repeat units which are derived from (a) about 64 weight percent to about 84.9 weight percent of a conjugated diolefin monomer, (b) about 15 weight percent to about 33 weight percent of a vinyl aromatic monomer, and (c) about 0.1 weight percent to about 3 weight percent of isobutoxymethyl acrylamide.
摘要:
It has been determined that rubbery terpolymers of a conjugated diolefin monomer, a vinyl aromatic monomer, and N-(isobutoxymethyl) acrylamide (IBMA) can be used to modify asphalt cement to greatly enhance the resistance to shoving, rutting, and low temperature cracking of asphalt concretes made therewith. These rubbery polymers have a Mooney viscosity which is within the range of about 35 to about 80. It has further been determined that these rubbery terpolymers are compatible with virtually all types of asphalt. It is particularly preferred for the rubbery polymers of this invention to also contain repeat units which are derived from hydroxypropyl methacrylate (HPMA). The subject invention more specifically relates to a modified asphalt cement which is comprised of (1) from about 90 weight percent to about 99 weight percent of asphalt; and (2) from about 1 weight percent to about 10 weight percent of a rubbery polymer which is comprised of repeat units which are derived from (a) about 64 weight percent to about 84.9 weight percent of a conjugated diolefin monomer, (b) about 15 weight percent to about 33 weight percent of a vinyl aromatic monomer, and (c) about 0.1 weight percent to about 3 weight percent of isobutoxymethyl acrylamide.
摘要:
The subject invention relates to a process for coating aggregate which is particularly useful in making asphalt concrete to provide the aggregate with a high level of resistance to stripping by water, which comprises: (1) mixing the aggregate with latex to form a latex/aggregate mixture which is comprised of from about 0.005 weight percent to about 0.5 weight percent dry polymer; (2) heating the latex/aggregate mixture to a temperature which is within the range of about 66.degree. C. to about 232.degree. C.; (3) maintaining the latex/aggregate mixture at said elevated temperature for a time which is sufficient to reduce the moisture content of the latex/aggregate mixture below about 0.7 weight percent and to allow the polymer in the latex to crosslink on the surface of the aggregate to produce the coated aggregate.