摘要:
IPv6 traffic may be carried through an MPLS IPv4 network without the use of IPv6-over-IPv4 tunneling. This provides great savings in overhead, signaling, and state information storage and also allows for routing through the MPLS IPv4 network to adjust in response to changes in network state. In one embodiment, an edge node of an MPLS IPv4 network resolves a destination IPv6 network of a received IPv6 packet to an MPLS label switched path. The resolution exploits received inter-domain routing information. This information identifies the IPv4 address of an egress node that is usable as a gateway to the destination network. Within the inter-domain routing information, the IPv4 address may be encoded in IPv6 format.
摘要:
IPv6 traffic may be carried through an MPLS IPv4 network without the use of IPv6-over-IPv4 tunneling. This provides great savings in overhead, signaling, and state information storage and also allows for routing through the MPLS IPv4 network to adjust in response to changes in network state. In one embodiment, an edge node of an MPLS IPv4 network resolves a destination IPv6 network of a received IPv6 packet to an MPLS label switched path. The resolution exploits received inter-domain routing information. This information identifies the IPv4 address of an egress node that is usable as a gateway to the destination network. Within the inter-domain routing information, the IPv4 address may be encoded in IPv6 format.
摘要:
IPv6 traffic may be carried through an MPLS IPv4 network without the use of IPv6-over-IPv4 tunneling. An IPv6 packet is sent through the MPLS IPv4 network through a label switched path (LSP). The IPv6 packet is encapsulated with a label stack associated with the LSP. A second level label is used in the label stack (in addition to the label associated with the LSP). This second level label provides important benefits.
摘要:
In a multicellular communications network system comprising base stations and a plurality of remote stations, a remote station listens for frames of information emitted by the different base or remote stations, in order to insert the network. The base stations and the remote stations comprise means for emitting the frames of information using a sequence of changing frequency hops of different operating frequencies. The remote station determines a set of "n" operating frequencies (Fi), from which it sequentially listens for a fixed period of time equal to 1/n of the frequency hopping period (FH) of a base station. When a frame of information is received by the remote station during one of the fixed period, the information is collected and processed in order to select the base station for attachment.
摘要:
A system and method for controlling the time occupation of signalling frequencies is disclosed, in a frequency hopping system including a plurality of remote stations communicating under control of transceivers with a transceiver of a base station, such communication being performed over a shared medium through a sequence of frequency hopping periods in a plurality of operating frequencies. The method consists in selecting a set of signalling frequencies among the operating frequencies, and interleaving signalling messages transmitted on each signalling frequency within each frequency hopping period to allow a remote station to enter the network for the first time or by re-acquiring synchronization, by scanning each signalling frequency for receiving a signalling message. The method preferably employs structure and techniques for averaging over the sequence of frequency hopping periods the time occupation for data and control messages transmissions on the plurality of signalling frequencies according to the time occupation for signalling messages transmissions.