摘要:
A flow measurement apparatus is provided that combines the functionality of an apparatus that uses strain-based sensors and ultrasonic sensors to measure the speed of sound propagating through a fluid flowing within a pipe, and measure pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters and an ultrasonic meter portion to measure the velocity and volumetric flow of the fluid. In response to an input signal or internal logic, the processor can manually or dynamically switch between the pressure sensors and ultrasonic sensors to measure the parameters of the flow. The flow measurement apparatus thereby provides a robust meter capable of measuring fluid flows having a wide range of different characteristics and flows exposed to different environmental conditions.
摘要:
A flow measurement apparatus is provided that combines the functionality of an apparatus that uses strain-based sensors and ultrasonic sensors to measure the speed of sound propagating through a fluid flowing within a pipe, and measure pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters and an ultrasonic meter portion to measure the velocity and volumetric flow of the fluid. In response to an input signal or internal logic, the processor can manually or dynamically switch between the pressure sensors and ultrasonic sensors to measure the parameters of the flow. The flow measurement apparatus thereby provides a robust meter capable of measuring fluid flows having a wide range of different characteristics and flows exposed to different environmental conditions.
摘要:
An apparatus 10 is provided that includes a spatial array of at least two unsteady pressure sensors 18–21 placed at predetermined axial locations x1–xN disposed axially along a pipe 14 for measuring at least one parameter of a fluid 12 flowing in the pipe 14. The pressure sensors 18–21 comprise a plurality of pressure sensing elements such as piezoelectric film sensors 23 for measuring unsteady pressures associated with acoustical pressures and/or vortical disturbances. The sensing elements are disposed circumferentially around the pipe and spaced a predetermined distance. The pressure signals P1(t)–PN(t) provided by the pressure sensors 18–21 are processed by a processing unit to provide an output signal indicative of a parameter of the fluid.
摘要翻译:提供了一种装置10,其包括至少两个非定常压力传感器18-21的空间阵列,该至少两个不稳定压力传感器18-21放置在沿着管14轴向设置的预定轴向位置x 1 -x N 用于测量在管14中流动的流体12的至少一个参数。 压力传感器18-21包括多个压力感测元件,例如用于测量与声压和/或旋涡相关的不稳定压力的压电膜传感器23。 感测元件围绕管道周向设置并间隔预定距离。 由压力传感器18-21提供的压力信号P 1(t)-P N N(t)由处理单元处理,以提供表示 流体参数
摘要:
A method and system for in situ calibrating a flow metering system to monitor fluid flow in a pipe from a well is provided. The method includes the steps of: a) measuring a first characteristic of the fluid flow exiting the well using a DP flow meter during a dry gas period, and producing an first output data representative of the first characteristic; b) measuring a second characteristic of the fluid flow exiting the well using a SONAR flow meter time during the dry gas period, and producing a second output data representative of the second characteristic; c) determining a dry gas offset between the DP flow meter and the SONAR flow meter based on the first output data and the second output data; and d) calibrating the flow metering system using the dry gas offset.
摘要:
A method for determining one or more fluid flow parameters for a fluid flowing within a pipe is provided. The fluid is a mixture of solid particles and gas. The method includes the steps of: a) providing a meter operable to determine the velocity of the fluid flow through the pipe, which meter is substantially insensitive to the particulate/gas mass ratio of the fluid flow; b) determining the velocity of the fluid flow within the pipe using the meter; and c) determining a particulate/gas mass ratio using a density value for the gas within the flow and the determined fluid flow velocity.
摘要:
A method and apparatus for determining at least one flow parameter of a fluid flowing within a pipe, which fluid contains particles entrained within the fluid flow is provided. The method includes the steps of: 1) determining a velocity of the fluid flow within the pipe; 2) sensing the impingement of particles on a surface wetted with the fluid flow, and producing a signal relating to the impingement; and 3) determining the at least one flow parameter of the fluid flow utilizing the determined fluid flow velocity and the sensor signal relating to impingement of the particles on the surface wetted with the fluid flow.
摘要:
A method of and apparatus for monitoring fluid flow passing within a pipe is provided. The method includes the steps of: a) providing a flow pressure value and a flow temperature value for the fluid flow within the pipe; b) providing a fluid flowmeter operable to be attached to an exterior of the pipe; c) providing a processor adapted to include an equation of state model for the pressure, volume, and temperature properties for the fluid flow, and further adapted to receive composition data values for the fluid flow, the flow pressure value, and the flow temperature value, and the flow velocity signals from the flowmeter; and d) determining a volumetric flow rate of one or more phases of the fluid flow.
摘要:
A damping device for a fluid flow meter mountable on the exterior of a pipe to meter fluid flow traveling within the pipe is provided. The flow meter has at least one ultrasonic sensor operable to transmit ultrasonic signals through a pipe wall in a direction normal to the pipe wall and into a fluid flow disposed within the pipe, which signals create secondary ultrasonic signals circumferentially traveling within the pipe wall at a frequency. The damping device includes a base and a plurality of tines. The base is conformable to an exterior surface of the pipe wall, and has a pipe-side surface and a tine-side surface. The plurality of tines is attached to the base and extends outwardly from the tine-side surface. Each tine is spaced apart from an adjacent tine by a tine-to-tine distance that is less than the wavelength of the secondary ultrasonic signals circumferentially propagating within the pipe wall.
摘要:
A method and apparatus for monitoring multiphase fluid flow passing within a pipe is provided. The method includes the steps of: a) providing a flow pressure value and a flow temperature value for the multiphase fluid flow within the pipe; b) providing a fluid flowmeter operable to be attached to an exterior of the pipe, the flowmeter including a spatial array of at least two sensors disposed at different axial positions along the pipe, which flowmeter is adapted to produce flow velocity signals indicative of a velocity of the fluid flow traveling within the pipe; c) providing a processor adapted to include an equation of state model for the pressure, volume, and temperature properties for the multiphase fluid flow, and further adapted to receive composition data values for the multiphase fluid flow, the flow pressure value, and the flow temperature value, and the flow velocity signals from the flowmeter; and d) determining a volumetric flow rate of one or both the gas phase and liquid phase of the fluid flow.
摘要:
An apparatus and method for determining the water cut value of a multiphase fluid flowing within a pipe is provided. The device includes a sequestering structure disposed within the pipe, a transmitting device, a receiving device, and a processing device. The sequestering structure at least partially defines a sensing passage within the pipe, which passage has a gap extending substantially normal to a direction of fluid flow within the pipe. The sensing passage is oriented to sequester an amount of a liquid component of the multi-phase fluid sufficient to form a continuous liquid body extending across the gap of the sensing passage. The transmitting device is operable to transmit a signal through the liquid across the gap of the sensing passage. The receiving device is operable to receive the signal after it has traversed the liquid within the sensing passage, and create sensor data. The processing device is in communication with at least the receiving device to receive and process the sensor data to determine the water cut value of the liquid.