摘要:
The vasoocclusive coil has a primary coil configuration with a helical loop at at least one end. The terminal helical loop can have a J-shaped configuration, preferably with a loop diameter of about 2 mm. The coil is preferably provided with helical loops at both ends, with helical loop at the proximal and distal ends of the coil acting as an anchor to prevent the coil from coming free from the location being treated and escaping into the vasculature. In a presently preferred embodiment both ends of the coil have a J-shape. In another presently preferred aspect, the vasoocclusive coil includes one or more loops intermediate the ends of the coil. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape.
摘要:
The shape memory segmented detachable coil assembly includes a plurality of hollow, tubular coil segments, and a plurality of connector members, with adjacent coil segments connected together by the connector members. The connector members are currently preferably hollow, tubular connector members that are advantageously detachable from selected portions of the coil segments by application of energy to one or more selected connector members. A heat activation member is used for heating one or more selected connector members to disconnect selected portions of the coil assembly. The heat activation member typically can be advanced axially through or over the coil assembly, and currently preferably comprises a fiber optic, although the heat activation member can also comprise a heat pipe, or a device for generating heat by RF energy or electrical resistance.
摘要:
The shape memory segmented detachable coil assembly includes a plurality of hollow, tubular coil segments, and a plurality of connector members, with adjacent coil segments connected together by the connector members. The connector members are currently preferably hollow, tubular connector members that are advantageously detachable from selected portions of the coil segments by application of energy to one or more selected connector members. A heat activation member is used for heating one or more selected connector members to disconnect selected portions of the coil assembly. The heat activation member typically can be advanced axially through or over the coil assembly, and currently preferably comprises a fiber optic, although the heat activation member can also comprise a heat pipe, or a device for generating heat by RF energy or electrical resistance.
摘要:
The three dimensional, low friction vasoocclusive coil has a distal portion that is three dimensionally shaped, and a proximal portion that is linear or helically shaped. The distal three dimensional portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated, while the proximal portion will fill and reinforce the basket. The vasoocclusive device is formed from at least one strand of a flexible material formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive device has a distal portion having a second operable, three dimensional shape for filing the anatomical cavity at the site in the vasculature to be treated, and a proximal portion having a second operable, substantially linear shape for filling and reinforcing the distal, three dimensional shaped portion when it is implanted at the site in the vasculature to be treated. Mandrels are provided for use in the method of making the vasoocclusive device.
摘要:
The vasoocclusive coil has a primary coil configuration with a helical loop at at least one end. The terminal helical loop can have a J-shaped configuration, preferably with a loop diameter of about 2 mm. The coil is preferably provided with helical loops at both ends, with helical loop at the proximal and distal ends of the coil acting as an anchor to prevent the coil from coming free from the location being treated and escaping into the vasculature. In a presently preferred embodiment both ends of the coil have a J-shape. In another presently preferred aspect, the vasoocclusive coil includes one or more loops intermediate the ends of the coil. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape.
摘要:
The vasoocclusive coil has a primary coil configuration with a helical loop at at least one end. The terminal helical loop can have a J-shaped configuration, preferably with a loop diameter of about 2 mm. The coil is preferably provided with helical loops at both ends, with helical loop at the proximal and distal ends of the coil acting as an anchor to prevent the coil from coming free from the location being treated and escaping into the vasculature. In a presently preferred embodiment both ends of the coil have a J-shape. In another presently preferred aspect, the vasoocclusive coil includes one or more loops intermediate the ends of the coil. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape.
摘要:
The coated superelastic stent is formed from a tube of collagen having an inner structure of a micro-cable made of strands of a material exhibiting super-elasticity or shape memory properties, such as nickel-titanium, and includes a strand of radiopaque material, such as platinum or gold, in order to provide a radiopaque marker during interventional therapeutic treatment or vascular surgery. The collagen tube can be loaded with a therapeutic agent for treatment of the desired site in the vasculature.
摘要:
The coated superelastic stent is formed from a tube of collagen having an inner structure of a micro-cable made of strands of a material exhibiting superelasticity or shape memory properties, such as nickel-titanium, and includes a strand of radiopaque material, such as platinum or gold, in order to provide a radiopaque marker during interventional therapeutic treatment or vascular surgery. The collagen tube can be loaded with a therapeutic agent for treatment of the desired site in the vasculature.
摘要:
The three dimensional, low friction vasoocclusive coil has a portion that is three dimensionally box or cubed shaped. The three dimensional box or cubed shaped portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The vasoocclusive device is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive coil may optionally include a portion that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional portion.
摘要:
An intravascular flow modifier and vascular reinforcement for treatment of aneurysms is formed of one or more loops of wire of resilient material formed into a series of transverse loops and longitudinal connecting sections to configure an essentially cylindrical reinforcement device that still allows, if desired, access to the neck of an aneurysm for insertion of embolic coils and the like. The proximal and distal regions of the sinusoidal loops may be more tightly coiled than the intermediate regions of the loops, or may have a larger diameter than the intermediate regions. The intravascular flow modifier and vascular reinforcement device can be provided with an outer covering that can be formed as a fiber, and can be woven, or can be formed as a ribbon wound about the intravascular flow modifier and vascular reinforcement device. The wire of resilient material can also be coated with a hydrophilic material. One or more round or oval intermediate loops extending radially outward may also be provided. An apparatus for removing clots may also be formed from one or more loops of wire of resilient material in a hollow conical shape non-detachably joined to a deployment device, to trap and hold clots within a vessel.