摘要:
A method of photoresist removal is provided. The method employs a plasma formed from a gas chemistry comprising NH3. The method is particularly suitable for use in MEMS fabrication processes, such as inkjet printhead fabrication.
摘要:
A method of etching a metal by a reactive ion etching process is provided. The etchant gas chemistry for the reactive ion etching process consists essentially of NH3. The process is particularly suitable for etching superalloys, which etch only slowly using conventional metal etching techniques.
摘要:
A method of forming an ink supply channel for an inkjet printhead comprises the steps of: (i) providing a wafer having a frontside and a backside; (ii) etching a plurality of frontside trenches into the frontside; (iii) filling each of the trenches with a photoresist plug; (iv) forming nozzle structures on the frontside using MEMS fabrication processes; (v) etching a backside trench from the backside, the backside trench meeting with one or more of the plugs; (vi) removing a portion of each photoresist plug via the backside trench by subjecting the backside to a biased oxygen plasma etch, thereby exposing sidewall features in the backside trench; (vii) modifying the exposed sidewall features; and (viii) removing the photoresist plugs to form the ink supply channel. The ink supply channel connects the backside to the frontside.
摘要:
A method of etching backside ink supply channels for an inkjet printhead. The method includes the steps of: (a) attaching a frontside of the printhead to a handle wafer; (b) etching the backside of the printhead using an anisotropic DRIE process to form a plurality of ink supply channels, the DRIE process including alternating etching and passivation steps, the passivation steps depositing a polymeric coating on sidewalls of the ink supply channels; and (c) removing the polymeric coating by etching the backside of the printhead in a biased plasma etching chamber using an O2 plasma. The chamber temperature is in the range of 90 to 180° C.
摘要:
A method of etching an ink supply channel for an inkjet printhead. The method comprises simultaneous etching and passivation processes. A single etching and passivating gas plasma comprises: (a) a passivating gas comprising oxygen; (b) an inert sputtering gas; (c) a fluorinated etching gas; and (d) a hydrophilizing dopant. The resultant ink supply channel has relatively hydrophilic sidewalls.
摘要:
A method of photoresist removal with concomitant de-veiling is provided. The method employs a plasma formed from a gas chemistry comprising O2, NH3 and a fluorine-containing gas, such as CF4. The method is particularly suitable for use in MEMS fabrication processes, such as inkjet printhead fabrication.
摘要:
A method of forming an ink supply channel for an inkjet printhead comprises the steps of: (i) providing a wafer having a frontside and a backside; (ii) etching a plurality of frontside trenches into the frontside; (iii) filling each of the trenches with a photoresist plug; (iv) forming nozzle structures on the frontside using MEMS fabrication processes; (v) etching a backside trench from the backside, the backside trench meeting with one or more of the plugs; (vi) removing a portion of each photoresist plug via the backside trench by subjecting the backside to a biased oxygen plasma etch, thereby exposing sidewall features in the backside trench; (vii) modifying the exposed sidewall features; and (viii) removing the photoresist plugs to form the ink supply channel. The ink supply channel connects the backside to the frontside.
摘要:
A process for facilitating modification of an etched trench is provided. The process comprises: (a) providing a wafer comprising an etched trench, the trench having a photoresist plug at its base; and (b) removing a portion of the photoresist by subjecting the wafer to a biased oxygen plasma etch. The process is particularly suitable for preparing a trench for subsequent argon ion milling. Printhead integrated circuits fabricated by a process according to the invention have improved ink channel surface profiles and/or surface properties.
摘要:
A method suitable for etching hydrophilic trenches into a substrate, such as silicon, is provided. The method comprises etching and sidewall passivation processes for achieving anisotropy. Sidewalls of the etched trench are made hydrophilic during the etch by virtue of a hydrophilizing dopant in a passivating gas plasma. The method is useful for etching ink supply channels in inkjet printheads.