Abstract:
To achieve a given spectral resolution with reduced detector size and commercially available pixel pitches, the Raman spectrum is shifted across the detector array such as by one of the following methods: 1) tuning the excitation wavelength; 2) rotating the grating; 3) displacing the effective input slit (fiber) and acquiring the spectrum under stepped displacement conditions; and 4) displacement of a lens relative to input fiber to displace effective input slit relative to the detector. A composite spectrum is formed and deconvolution of the entrance aperture image and/or pixel masking is then used.
Abstract:
A probe of a Raman spectroscopy system has a wavelength and/or amplitude referencing system for determining a wavelength of the excitation signal. Preferably, this referencing system is near an output aperture, through which the excitation signal is transmitted to the sample. In this way, any birefringence or polarization dependent loss (PDL) that may be introduced by optical elements in the system can be compensated for since the wavelength reference system will detect the effect or impact of these elements.
Abstract:
The present invention eliminates artifacts in an image formed using a plurality of imaging sources. Visible seams in the image are eliminated by randomizing the stitch point between the scan lines produced by each imaging source. The randomization may be optimized by additionally applying a method for relocating the random stitch point based on the data content of the scan line, adjacent scan lines, and other criteria. The present invention further compensates for in-scan and cross-scan errors caused by thermally induced errors, spinner synchronization errors, mechanical misalignment, and other factors associated with the use of a plurality of imaging systems. A photodetector system, comprising a mask having a pair of triangular openings, provides measurements of the in-scan and cross-scan errors.