摘要:
An imaging member includes a surface layer comprising a fluoroelastomer-silicone composite formed from a reaction mixture comprising a fluoroelastomer, an oxyaminosilane, and an oxysilane-terminated compound. Methods of manufacturing the imaging member and processes for variable lithographic printing using the imaging member are also disclosed.
摘要:
An imaging member includes a surface layer comprising a fluorosilicone and an infrared-absorbing filler. At least 75% of the siloxane units in the fluorosilicone are fluorinated. Methods of manufacturing the imaging member and processes for variably lithographic printing using the imaging member are also disclosed.
摘要:
An Ink-based digital printing system comprises an external fluid applicator for applying multi-component, multi-functional fountain solution to a surface of an imaging plate. The plate is image wise exposed using a high power laser to remove primary components of the fountain solution from select regions of the plate according to digital image data, leaving a layer of the secondary components at said select regions. The plate is then inked with ink useful in printing. The ink adheres to the select regions from which the primary components have been removed to form an ink image. The ink image is transferred at an image transfer step wherein the secondary components enable efficient transfer of the ink to a medium with reduced image quality defects. The multi-component fountain solution comprises primary components that reject or repel ink, and secondary components that function as a release agent.
摘要:
Methods and raster output scanner (ROS) systems are presented in which beam delay values are set for an array of ROS light sources based on wiper error and jitter error with column alignment achieved at an alignment location spaced from a center of scan (COS) location toward an end of scan location (EOS) along a fast scan range of operation of the ROS.
摘要:
Methods and raster output scanner (ROS) systems are presented in which beam delay values are set for an array of ROS light sources based on wiper error and jitter error with column alignment achieved at an alignment location spaced from a center of scan (COS) location toward an end of scan location (EOS) along a fast scan range of operation of the ROS.
摘要:
Raster Output Scanners and printing systems are presented along with methods for mitigating banding in printing systems, in which electronic banding compensation is employed using cross-process direction light source intensity banding correction profiles tailored to corresponding reflective facets of a rotating polygon.
摘要:
Disclosed is a method and system for calibrating an image capturing sensor. The method and system include generating a test pattern on an image receiving device and measuring one or more colorimetric properties of the test pattern with an image sensor. The disclosed method and system measure the test pattern with the image sensor located in two or more different cross-process positions to determine an independent uniformity profile for the image sensor and the image rendering process.
摘要:
Raster Output Scanners and printing systems are presented along with methods for mitigating banding in printing systems, in which electronic banding compensation is employed using cross-process direction light source intensity banding correction profiles tailored to corresponding reflective facets of a rotating polygon.
摘要:
A test target is written in a non image zone at set time intervals. The test target is sensed. At least one of frequency, amplitude and phase of banding, which is inherent in a printing device, is determined based on the sensed test target. At least one banding compensation parameter based at least on one of the determined frequency, amplitude and phase of banding is determined. Characteristics of producing an image based on the determined banding compensation parameter are adjusted to compensate the banding inherent in the printing device.
摘要:
A control system and method of predicting how a machine will respond to occasional or periodic service, and adjusting the machine accordingly to account for the change in machine behavior due to the service, mitigates transients in machine performance. A prediction of the service effect is fed forward to the existing control system just prior to the occurrence of service in order to compensate for the service effect. This prediction is continually updated and refined using subsequent measurements of the effect of service on machine performance. More specifically, a controller monitors the process output variables indicative of the machine performance and adjusts machine inputs to achieve a desired level of machine performance. The controller monitors the process output variables indicative of the machine performance prior to, during, and immediately after the service and adjusts the machine inputs to compensate for the transients.