摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
An embodiment is a method and apparatus for a white or full-color light-emitting diode. A first mask having a first pattern is applied over surface of an n-type layer. A first active region is grown selectively and including single or multiple quantum wells (QWs) of a first active color to cause a first wavelength shift in a first vicinity area around the first pattern. The first wavelength shift results in an emission of a first desired color according to the first pattern.
摘要:
An embodiment is a method and apparatus for a white or full-color light-emitting diode. First single or multiple quantum wells (QWs) at a first wavelength are formed at an active region between a p-type layer and an n-type layer of a light-emitting diode. Multiple passive quantum wells (QWs) are formed within the p-type layer or the n-type layer. The multiple passive QWs are optically pumped by the first or single multiple QWs to generate a desired color.
摘要:
Nitride semiconductor films, such as for use in solid state light emitting devices and electronic devices, are fabricated in an environment of relatively high nitrogen potential such that nitrogen vacancies in the growing film are reduced. A reactor design, and method for its use, provide high nitrogen precursor partial pressure, precracking of the precursor using a catalytic metal surface, prepyrolyzing the precursor, using catalytically-cracked molecular nitrogen as a nitrogen precursor, and/or exposing the surface to an ambient which is extremely rich in active nitrogen species. Improved efficiency for light emitting devices, particularly in the blue and green wavelengths and improve transport properties in nitride electronic devices, i.e., improved performance from nitride-based devices such as InGaAlN laser diodes, transistors, and light emitting diodes is thereby provided.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
An embodiment is a method and apparatus for a white or full-color light-emitting diode. First single or multiple quantum wells (QWs) at a first wavelength are formed at an active region between a p-type layer and an n-type layer of a light-emitting diode. Multiple passive quantum wells (QWs) are formed within the p-type layer or the n-type layer. The multiple passive QWs are optically pumped by the first or single multiple QWs to generate a desired color.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
A semiconductor laser diode with a high indium content is provided with a lattice matched cladding layer or layers. One or both of the cladding layers may comprise bulk aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and/or a short period superlattice structures of, for example, a plurality of alternating layer pairs of aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and gallium indium nitride in the ratio of GasIn1-sN, providing a multi-quantum barrier (MQB) effect. Lattice matching of the cladding layer(s) and active layer reduce or eliminate strain, and the materials chosen for the cladding layers optimizes optical and carrier confinement. Alternatively, the lattice parameters may be selected to provide strain balanced MQBs, e.g., where the barrier layers are tensile-strained and the well layers compressed.
摘要翻译:具有高铟含量的半导体激光二极管设置有格子匹配包层。 包覆层中的一个或两个可以包括Al x Ga 1-x-y In y N的比例的/或比如多个交替层叠的铝镓铟镓的短周期超晶格结构的块状铝镓氮化铟, 的Al x Ga 1-x-y In y N和氮化镓铟,其比例为GasIn1-sN,提供多量子势垒(MQB)效应。 包覆层和有源层的晶格匹配减少或消除应变,为包层选择的材料优化光学和载流子限制。 或者,可以选择晶格参数以提供应变平衡的MQB,例如,其中阻挡层是拉伸应变的,并且阱层被压缩。
摘要:
A semiconductor laser diode with a high indium content is provided with a lattice matched cladding layer or layers. One or both of the cladding layers may comprise bulk aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and/or a short period superlattice structures of, for example, a plurality of alternating layer pairs of aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and gallium indium nitride in the ratio of GasIn1-sN, providing a multi-quantum barrier (MQB) effect. Lattice matching of the cladding layer(s) and active layer reduce or eliminate strain, and the materials chosen for the cladding layers optimizes optical and carrier confinement. Alternatively, the lattice parameters may be selected to provide strain balanced MQBs, e.g., where the barrier layers are tensile-strained and the well layers compressed.
摘要翻译:具有高铟含量的半导体激光二极管设置有格子匹配包层。 包覆层中的一个或两个可以包括Al x Ga 1-x-y In y N的比例的/或比如多个交替层叠的铝镓铟镓的短周期超晶格结构的块状铝镓氮化铟, 的Al x Ga 1-x-y In y N和氮化镓铟,其比例为GasIn1-sN,提供多量子势垒(MQB)效应。 包覆层和有源层的晶格匹配减少或消除应变,为包层选择的材料优化光学和载流子限制。 或者,可以选择晶格参数以提供应变平衡的MQB,例如,其中阻挡层是拉伸应变的,并且阱层被压缩。