摘要:
Nitride semiconductor films, such as for use in solid state light emitting devices and electronic devices, are fabricated in an environment of relatively high nitrogen potential such that nitrogen vacancies in the growing film are reduced. A reactor design, and method for its use, provide high nitrogen precursor partial pressure, precracking of the precursor using a catalytic metal surface, prepyrolyzing the precursor, using catalytically-cracked molecular nitrogen as a nitrogen precursor, and/or exposing the surface to an ambient which is extremely rich in active nitrogen species. Improved efficiency for light emitting devices, particularly in the blue and green wavelengths and improve transport properties in nitride electronic devices, i.e., improved performance from nitride-based devices such as InGaAlN laser diodes, transistors, and light emitting diodes is thereby provided.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
The AlGaN upper cladding layer of a nitride laser diode is replaced by a non-epitaxial layer, such as metallic silver. If chosen to have a relatively low refractive index value, the mode loss from absorption in the non-epitaxial cladding layer is acceptably small. If also chosen to have a relatively high work-function, the non-epitaxial layer forms an electrical contact to the nitride semiconductors. An indium-tin-oxide layer may also be employed with the non-epitaxial cladding layer.
摘要:
A semiconductor laser diode with a high indium content is provided with a lattice matched cladding layer or layers. One or both of the cladding layers may comprise bulk aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and/or a short period superlattice structures of, for example, a plurality of alternating layer pairs of aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and gallium indium nitride in the ratio of GasIn1-sN, providing a multi-quantum barrier (MQB) effect. Lattice matching of the cladding layer(s) and active layer reduce or eliminate strain, and the materials chosen for the cladding layers optimizes optical and carrier confinement. Alternatively, the lattice parameters may be selected to provide strain balanced MQBs, e.g., where the barrier layers are tensile-strained and the well layers compressed.
摘要翻译:具有高铟含量的半导体激光二极管设置有格子匹配包层。 包覆层中的一个或两个可以包括Al x Ga 1-x-y In y N的比例的/或比如多个交替层叠的铝镓铟镓的短周期超晶格结构的块状铝镓氮化铟, 的Al x Ga 1-x-y In y N和氮化镓铟,其比例为GasIn1-sN,提供多量子势垒(MQB)效应。 包覆层和有源层的晶格匹配减少或消除应变,为包层选择的材料优化光学和载流子限制。 或者,可以选择晶格参数以提供应变平衡的MQB,例如,其中阻挡层是拉伸应变的,并且阱层被压缩。
摘要:
A semiconductor laser diode with a high indium content is provided with a lattice matched cladding layer or layers. One or both of the cladding layers may comprise bulk aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and/or a short period superlattice structures of, for example, a plurality of alternating layer pairs of aluminum gallium indium nitride in the ratio of AlxGa1-x-yInyN and gallium indium nitride in the ratio of GasIn1-sN, providing a multi-quantum barrier (MQB) effect. Lattice matching of the cladding layer(s) and active layer reduce or eliminate strain, and the materials chosen for the cladding layers optimizes optical and carrier confinement. Alternatively, the lattice parameters may be selected to provide strain balanced MQBs, e.g., where the barrier layers are tensile-strained and the well layers compressed.
摘要翻译:具有高铟含量的半导体激光二极管设置有格子匹配包层。 包覆层中的一个或两个可以包括Al x Ga 1-x-y In y N的比例的/或比如多个交替层叠的铝镓铟镓的短周期超晶格结构的块状铝镓氮化铟, 的Al x Ga 1-x-y In y N和氮化镓铟,其比例为GasIn1-sN,提供多量子势垒(MQB)效应。 包覆层和有源层的晶格匹配减少或消除应变,为包层选择的材料优化光学和载流子限制。 或者,可以选择晶格参数以提供应变平衡的MQB,例如,其中阻挡层是拉伸应变的,并且阱层被压缩。
摘要:
A structure and method for producing same provides a solid-state light emitting device with suppressed lattice defects in epitaxially formed nitride layers over a non-c-plane oriented (e.g., semi-polar) template or substrate. A dielectric layer with “window” openings or trenches provides significant suppression of all diagonally running defects during growth. Posts of appropriate height and spacing may further provide suppression of vertically running defects. A layer including gallium nitride is formed over the dielectric layer, and polished to provide a planar growth surface with desired roughness. A tri-layer indium gallium nitride active region is employed. For laser diode embodiments, a relatively thick aluminum gallium nitride cladding layer is provided over the gallium nitride layer.
摘要:
A structure and method for producing same provides a solid-state light emitting device with suppressed lattice defects in epitaxially formed nitride layers over a non-c-plane oriented (e.g., semi-polar) template or substrate. A dielectric layer with “window” openings or trenches provides significant suppression of all diagonally running defects during growth. Posts of appropriate height and spacing may further provide suppression of vertically running defects. A layer including gallium nitride is formed over the dielectric layer, and polished to provide a planar growth surface with desired roughness. A tri-layer indium gallium nitride active region is employed. For laser diode embodiments, a relatively thick aluminum gallium nitride cladding layer is provided over the gallium nitride layer.
摘要:
A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow≦xhigh≦0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
摘要翻译:发光器件包括具有由掺杂有p型掺杂剂的Al x Ga Ga x Ga x Ga x Ga N交替层和掺杂有p型掺杂剂的Al x O x Ga 1-x low N形成的短周期超晶格(SPSL)的p侧异质结构,其中xlow≤xhigh≤ 0.9。 SPSL的每个层具有小于或等于约六个双层AlGaN的厚度。