Abstract:
Methods for fabricating ultraviolet laser diode devices include providing substrate members comprising gallium and nitrogen or aluminum and nitrogen, forming an epitaxial material overlying a surface region of the substrate members, patterning the epitaxial material to form epitaxial mesa regions, depositing a bond media on at least one of the epitaxial mesa regions, bonding the bond media on at least one of the epitaxial mesa regions to a handle substrate, subjecting the sacrificial layer to an energy source to initiate release of the substrate member and transfer the at least one of the epitaxial mesa regions to the handle substrate, and processing the at least one of the epitaxial mesa regions to form the ultraviolet laser diode device.
Abstract:
A semiconductor laser element includes: an n-side semiconductor layer formed of a nitride semiconductor; an active layer disposed on or above the n-side semiconductor layer and formed of a nitride semiconductor; a p-side semiconductor layer disposed on the active layer, formed of a nitride semiconductor, and including: an undoped first part disposed in contact with an upper face of the active layer and comprising at least one semiconductor layer, an electron barrier layer disposed in contact with an upper face of the first part, containing a p-type impurity, and having a band gap energy that is larger than a band gap energy of the first part, and a second part disposed in contact with the upper face of the electron barrier layer and comprising at least one p-type semiconductor layer containing a p-type impurity; and a p-electrode disposed in contact with the upper face of the second part.
Abstract:
An intermediate ultraviolet laser diode device includes a gallium and nitrogen containing substrate member comprising a surface region, a release material overlying the surface region, an n-type gallium and nitrogen containing material; an active region overlying the n-type gallium and nitrogen containing material; a p-type gallium and nitrogen containing material; a first transparent conductive oxide material overlying the p-type gallium and nitrogen containing material; and an interface region overlying the first transparent conductive oxide material.
Abstract:
An optoelectronic device grown on a miscut of GaN, wherein the miscut comprises a semi-polar GaN crystal plane (of the GaN) miscut x degrees from an m-plane of the GaN and in a c-direction of the GaN, where −15
Abstract:
Laser diode technology incorporating etched facet mirror formation and optical coating techniques for reflectivity modification to enable ultra-high catastrophic optical mirror damage thresholds for high power laser diodes.
Abstract:
In an example, the present invention provides a gallium and nitrogen containing laser diode device. The device has a gallium and nitrogen containing substrate material comprising a surface region, which is configured on either a ({10-10}) crystal orientation or a {10-10} crystal orientation configured with an offcut at an angle toward or away from the [0001] direction. The device also has a GaN region formed overlying the surface region, an active region formed overlying the surface region, and a gettering region comprising a magnesium species overlying the surface region. The device has a p-type cladding region comprising an (InAl)GaN material doped with a plurality of magnesium species formed overlying the active region.
Abstract:
A semiconductor laser element includes an n-side semiconductor layer, an active layer, and a p-side semiconductor layer, layered upward in this order, each being made of a nitride semiconductor. The active layer includes one or more well layers, and an n-side barrier layer located lower than the one or more well layers. The n-side semiconductor layer includes a composition-graded layer located in contact with the n-side barrier layer. The composition-graded layer has a band-gap energy that decreases toward an upper side of the composition-graded layer, with a band-gap energy of the upper side being smaller than a band-gap energy of the n-side barrier layer. The composition-graded layer has an n-type dopant concentration greater than 5×1017/cm3 and less than or equal to 2×1018/cm3. The n-side barrier layer has an n-type dopant concentration greater than that of the composition-graded layer and a thickness smaller than that of the composition graded layer.
Abstract:
A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
Abstract:
Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.