摘要:
A device for detecting cardiac ischemia is disclosed. The device includes a processor that is configured to distinguish between two different heart beats types such as ventricularly paced beats and supraventricular beats. The processor collects separate reference data for each beat type indicative of the normal values of a cardiac feature associated with these beat types. The processor performs an ischemia test by separately comparing present values of the cardiac feature for each beat type with the reference values for the corresponding beat type.
摘要:
A device for detecting cardiac ischemia is disclosed. The device includes a processor that is configured to distinguish between two different heart beats types such as ventricularly paced beats and supraventricular beats. The processor applies different ischemia tests to the two different beat types, and generates alert when it detects ischemia.
摘要:
A device for detecting cardiac ischemia is disclosed. The device includes a processor that is configured to distinguish between two different heart beats types such as left bundle branch block beats and normal sinus beats. The processor applies different ischemia tests to the two different beat types, and generates alert when it detects ischemia.
摘要:
A device for detecting cardiac ischemia is disclosed. The device includes a processor that is configured to operate in three different modes according to relative frequency of different beat types. If beats of a first beat type, such as ventricularly paced beats, are predominant, the processor ignores other beat types and performs ischemia detection only on ventricularly paced beats. Conversely, if beats of a second beat type, such as sinus or atrially paced beats, are predominant, the processor ignores ventricularly paced beats and performs ischemia detection only on sinus or atrially paced beats. If there is a mixture of beat types such that neither predominates, the processor performs ischemia detection on both beat types.
摘要:
A system for the detection of cardiac events occurring in a human patient is provided. At least two electrodes are included in the system for obtaining an electrical signal from a patient's heart. An electrical signal processor is electrically coupled to the electrodes for processing the electrical signal. The systems receives data regarding the patient's state (e.g. asleep, exercising). Patient state information is stored in a patient state array, thereby enabling the system to track the patient's state over time, and to select an appropriate test for detecting a cardiac event based on both past and present data regarding the patient's state.
摘要:
The invention describes fluid-based lead systems. The fluid-based leads may be used for sensing from, and stimulating of, human tissue. The fluid-based leads can be used to transfer signals between two locations. The fluid-based leads offer advantages when communicating signals along their length since the leads may be safely used in magnetic environments and offer increased elastic characteristics which are less prone to breakage. The leads can be used externally or with implantable devices, such as those used to monitor, and deliver therapy during the treatment of medical disorders such as cardiac and neurological disorders.
摘要:
Alarm tests are disclosed which use alarm test signals to assess alarms provided by medical devices. Especially relevant are implanted devices that monitor cardiac activity and provide notification in response to medically relevant events. Alarm tests can occur periodically, or in response to a patient, doctor, or remote party initiating the alarm test. Alarm tests can also occur during the actual alarms issued to detected medical events. Alarm tests lead to pass or fail results, which in turn may cause operations to contingently occur. Alarm test failure in the auditory, visual, or tactile modality, may cause an alternatively defined alarm signal to be used as back-up. Alarm test logs can store alarm test results, including quantification of the measured alarm signal. Rapid alarm tests are described, as are various methods of accurately measuring characteristics of the test signal in ambulatory patients, which are especially relevant to a vibration alarm.
摘要:
A system for the detection of cardiac events occurring in a human patient is provided. At least two electrodes are included in the system for obtaining an electrical signal from a patient's heart. An electrical signal processor is electrically coupled to the electrodes for processing the electrical signal and a patient alarm means is further provided and electrically coupled to the electrical signal processor. The electrical signal is acquired in the form of electrogram segments, which are categorized according to heart rate, ST segment shift and type heart rhythm (normal or abnormal). Baseline electrogram segments are tracked over time.
摘要:
A system for the detection of cardiac events occurring in a human patient is provided. At least two electrodes are included in the system for obtaining an electrical signal from a patient's heart. An electrical signal processor is electrically coupled to the electrodes for processing the electrical signal. The system determines the presence of a cardiovascular condition by applying a sliding scale rule to heart signal feature values. When the cardiovascular condition is ischemia, the ST segment may be analyzed. A sliding scale is applied to ST segment shifts such that when the magnitudes of ST segment shifts are relatively small, a larger number of beats is required to detect ischemia compared to the case when the magnitudes of ST shifts are large.
摘要:
A system for the detection of cardiac events occurring in a human patient. At least two electrodes are included in the system for obtaining an electrical signal from a patient's heart. An electrical signal processor is electrically coupled to the electrodes for processing the electrical signal. The system receives data regarding the patient's state (e.g. asleep, exercising). Patient state information is stored in a patient state array, thereby enabling the system to track the patient's state over time, and to select an appropriate test for detecting a cardiac event based on both past and present data regarding the patient's state.