Abstract:
The control circuit includes first and second primary terminals for connection to a DC network, a secondary terminal connected in series between the first and second primary terminals and at least one auxiliary energy conversion element and an auxiliary terminal. The first and second primary terminals have a plurality of modules and a plurality of primary energy conversion elements connected in series therebetween to define a current transmission path, each module including at least one energy storage device, each energy storage device being selectively removable from the current transmission path. The plurality of modules include a first module and a second module the first module being connected in series with at least one primary energy conversion element between the first primary terminal and the secondary terminal to define a first current transmission path portion, and the second module being connected in series with at least one other primary energy conversion element between the second primary terminal and the secondary terminal to define a second current transmission path portion. The auxiliary energy conversion element is connected in series between the secondary and auxiliary terminals, the auxiliary terminal being for connection to ground.
Abstract:
In the field of voltage source converters which provide high voltage direct current (HVDC) power transmission and reactive power compensation there is a need for an improved power electronic module which exhibits high efficiency, provides a safe failure mode, and is tolerant of faults.A power electronic module (30; 70), for use in a chain-link converter of a voltage source converter providing high voltage direct current power transmission and reactive power compensation, comprises a first set (32) of series-connected switching elements connected in parallel with an energy storage device (34). The first set (32) of series-connected switching elements includes a first latching switching element (38) and a first non-latching switching element (40).
Abstract:
A voltage source converter for a HVDC power transmission system is disclosed. According to one aspect, the voltage source converter includes at least one phase element having series connected diodes configured to interconnect, in use, a DC network and an AC network. The voltage source converter further includes at least one auxiliary converter configured to act as a waveform synthesizer to modify the DC voltage presented to the DC side of one or more phase elements.
Abstract:
The control circuit includes first and second primary terminals for connection to a DC network, a secondary terminal connected in series between the first and second primary terminals and at least one auxiliary energy conversion element and an auxiliary terminal. The first and second primary terminals have a plurality of modules and a plurality of primary energy conversion elements connected in series therebetween to define a current transmission path, each module including at least one energy storage device, each energy storage device being selectively removable from the current transmission path. The plurality of modules include a first module and a second module the first module being connected in series with at least one primary energy conversion element between the first primary terminal and the secondary terminal to define a first current transmission path portion, and the second module being connected in series with at least one other primary energy conversion element between the second primary terminal and the secondary terminal to define a second current transmission path portion. The auxiliary energy conversion element is connected in series between the secondary and auxiliary terminals, the auxiliary terminal being for connection to ground.
Abstract:
There is a control circuit comprising first and second DC terminals for connection to a DC network, the first and second DC terminals having a plurality of modules and at least one energy conversion element connected in series therebetween to define a current transmission path, the plurality of modules defining a chain-link converter, each module including at least one energy storage device, the or each energy storage device being selectively removable from the current transmission path to cause a current waveform to flow from the DC network through the current transmission path and the or each energy conversion element and thereby remove energy from the DC network, the or each energy storage device being selectively removable from the current transmission path to modulate the current waveform to maintain a zero net change in energy level of the chain-link converter.
Abstract:
A power electronic converter (30)is for use in high voltage direct current power transmission and reactive power compensation, the power electronic converter (30) including three phase elements (32) defining a star connection (36) and a converter unit (34) including first and second DC terminals (50,52) for connection in use to a DC network (56) and three AC terminals (54), the converter unit (34) including a plurality of switching elements (70,74) controllable in use to facilitate power conversion between the AC and DC networks (44,56), the power electronic converter (30) further including a third DC terminal (78) connected between the first and second DC terminals (50,52), the third DC terminal (78) being connected to a common junction (40) of the star connection (36) to define an auxiliary connection (82), the auxiliary connection (82) including at least one dump resistor (84) connected between the common junction (40) and the third DC terminal (78), wherein the switching elements (70,74) of the converter unit (34) are controllable in use to modify a phase voltage at each AC terminal (54) to include a triplen harmonic voltage component so as to dissipate real power in the or each dump resistor (84) at a triplen harmonic frequency.
Abstract:
In the field of high voltage DC power transmission there is a need for a small, lightweight, inexpensive, and reliable means of connecting first and second high voltage DC power transmission networks.A DC to DC converter assembly, for connecting first and second high voltage DC power transmission networks, comprises an inverter which has first and second terminals which are connectable in use to a first high voltage DC power transmission network. The inverter is defined by a modular multilevel converter which includes a first inverter limb that extends between the first and second terminals and has first and second inverter limb portions that are separated by a third terminal. Each inverter limb portion includes at least one rationalised module which has first and second sets of series-connected current flow control elements that are connected in parallel with at least one energy storage device. Each set of current flow control elements includes an active switching element to selectively direct current through the energy storage device and a passive current check element to limit current flow through the rationalised module to a single direction. The current flow control elements and the or each energy storage device combine to selectively provide a voltage source to synthesise an AC voltage (VAC) at the third terminal. The DC to DC converter assembly also includes a rectifier that is electrically connected to the third terminal of the inverter by a first link and is connectable in use to a second high voltage DC power transmission network. The rectifier is configured to convert the AC voltage (VAC) conveyed by the first link into a second DC voltage (V2) for supply to the second high voltage DC power transmission network.
Abstract:
Electrical machine arrangements have advantages with regard to providing local electrical power and starting. Embedding such electrical machine arrangements in machinery such as gas turbine engines is advantageous in removing mechanical linkages and reducing aerodynamic drag. However, the components utilized must be able to withstand harsh environmental conditions and therefore the DC link capacitor used for smoothing of voltage fluctuations are limited to relatively low capacitance densities. Low density DC link capacitors require large sizes which render electrical machines less acceptable for embedded usage. By providing offset of electrical current in inductance elements such as stator windings and stator coils of electrical machines in dead periods of the cycle a reduction in DC link capacitor requirements is achieved reducing the size, weight and complexity of installing electrical machines in gas turbine engines.
Abstract:
A DC-to-DC converter assembly includes an inverter having first and second terminals connectable to a power transmission network. The inverter has a modular multilevel converter including a first inverter limb extending between the first and second terminals with first and second inverter limb portions separated by a third terminal. Each inverter limb portion includes at least one rationalized module having first and second sets of series-connected current flow control elements connected in parallel with an energy storage device. The current flow control elements include an active switching element directing current through the energy storage device and a passive current check element limiting current flow to one direction. The current flow control elements and energy storage device provide a voltage source to synthesize an AC voltage at the third terminal. A rectifier is electrically connected to the third terminal and connectable to a second power transmission network.
Abstract:
A power electronic converter for use in high voltage direct current power transmission and reactive power compensation comprises three converter limbs, each converter limb including first and second DC terminals for connection in use to a DC network and an AC terminal for connection in use to a respective phase of a three-phase AC network, each converter limb defining first and second limb portions being connected in series between the respective AC terminal and a respective one of the first and second DC terminals, each limb portion including at least one switching element being controllable in use to facilitate power conversion between the AC and DC networks, the power electronic converter further including a plurality of auxiliary units, each auxiliary unit being operably associated with the respective phase of the AC network, each auxiliary unit including at least one module including a voltage source, the limb portions being controllable in use to define at least one three-phase static synchronous compensator including at least one of the plurality of auxiliary units in each branch of a star configuration, each of the first and/or second DC terminals defining the neutral point of the respective star configuration.