摘要:
A two-stage reciprocating compressor is provided. The compressor includes a reversible motor that rotates a crankshaft. The crankshaft is connected to a piston by a mechanical system. The mechanical system drives the piston at a full stroke between a bottom position and a top dead center position when the motor is operated in a forward direction. The mechanical system drives the piston at a reduced stroke between an intermediate position and the top dead center position when the motor is operated in the reverse direction. The compressor also includes a control for selectively operating the motor in either the forward direction at a first preselected, fixed speed or in the reverse direction at a second preselected fixed speed.
摘要:
A stabilizing structure for a throw adjusting eccentric cam in a two-stage reciprocating compressor is provided. The compressor includes a block that has at least one cylinder with an associated compression chamber and piston, a crankshaft that includes an eccentric crankpin, and a reversible motor for rotating the crankshaft in a forward and a reverse direction. An eccentric, two position cam is rotatably mounted over the crankpin. The cam rotates to and operates at a first position relative to said crankpin when the motor is running in the forward direction and rotates to and operates at a second position relative to said crankpin when the motor is running in the reverse direction. The combined eccentricities of the crankpin and the cam cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. There is also provided a control for selectively operating the motor either in the forward direction or in the reverse direction.
摘要:
A two-stage reciprocating compressor is provided. The compressor includes a block with a single cylinder and associated single compression chamber and single piston. The compressor further includes a crankshaft. The crankshaft has an eccentric crankpin that is operatively connected to the piston. A reversible motor is provided to rotate the crankshaft in a forward direction and in a reverse direction. An eccentric cam is rotatably mounted on the eccentric crankpin. The eccentric cam is held stationary with respect to the crankpin when the crankshaft is rotating in the forward direction. When rotating in the forward direction, the crankshaft drives the piston at a full stroke between a bottom position and a top dead center position. The eccentric cam rotates with respect to the crankpin when the crankshaft is rotating in the reverse direction. When rotating in the reverse direction, the crankshaft drives the piston at a reduced stroke between an intermediate position and the top dead center position.
摘要:
For a refrigerant compressor having two capacities, a camming structure operable in different manners depending on direction of crankshaft rotation, to achieve each capacity while providing top dead center piston operation thru the use of a circular cam bushing which is eccentrically, rotatably mounted on the crankshaft eccentric and within the connecting rod bearing wherein the combined eccentricities of the bushing and the eccentric equal the primary stroke of the piston. A first stop mechanism is provided for stabilizing the bushing on the eccentric upon rotation of the crankshaft in one direction whereby the eccentricities of the eccentric and bushing become aligned and remain so during synchronous rotational orbiting motion of the eccentric and bushing during rotation of the crankshaft for producing full stroke and full capacity. A second stop mechanism is provided for stabilizing the bushing within the bearing upon opposite rotation of the crankshaft whereby the bushing eccentricity becomes and remains substantially aligned with the connecting rod stroke axis while the eccentric moves alone thru its rotational orbit for producing reduced stroke and reduced capacity. A unique electrical control system is also provided for a reversible electric induction motor for selectively and efficiently driving the compressor crankshaft in either direction for providing the different capacities.
摘要:
A stabilizing structure for a throw adjusting eccentric cam in a two-stage reciprocating compressor is provided. The compressor includes a block that has at least one cylinder with an associated compression chamber and piston, a crankshaft that includes an eccentric crankpin, and a reversible motor for rotating the crankshaft in a forward and a reverse direction. An eccentric, two position cam is rotatably mounted over the crankpin. The cam rotates to and operates at a first position relative to said crankpin when the motor is running in the forward direction and rotates to and operates at a second position relative to said crankpin when the motor is running in the reverse direction. The combined eccentricities of the crankpin and the cam cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. There is also provided a control for selectively operating the motor either in the forward direction or in the reverse direction.
摘要:
An electrical control system for a variable capacity compressor having an A/C motor is provided. The control system includes a first circuit that has a start winding in series with a capacitor, a second circuit that has a main winding. The control system also includes a third circuit that includes the start winding and a fourth circuit that includes the main winding in series with the capacitor. There is also provided a power supply line that provides power to each of the circuits. The control system further includes a first switch and a second switch, both of which are responsive to loading conditions. The first switch operates to connect the first and second circuits with the power supply line to run the compressor for high load operation and the second switch operates to connect the third and fourth circuits with the power supply line to run the compressor for partial load operation.
摘要:
Several transmission embodiments selectively communicate rotary drive to an orbiting scroll to achieve capacity modulation. In these embodiments, when the motor is driven in a first direction, the orbiting scroll is driven at a rate which is equal to the motor speed. However, if the motor is driven in a reverse direction, the orbit rate of the orbiting scroll is reduced. The transmission ensures that the orbiting scroll member itself is driven in the proper forward direction regardless of whether the motor is being driven in forward or reverse.
摘要:
Several transmission embodiments selectively communicate rotary drive to an orbiting scroll to achieve capacity modulation. In these embodiments, when the motor is driven in a first direction, the orbiting scroll is driven at a rate which is equal to the motor speed. However, if the motor is driven in a reverse direction, the orbit rate of the orbiting scroll is reduced. The transmission ensures that the orbiting scroll member itself is driven in the proper forward direction regardless of whether the motor is being driven in forward or reverse.
摘要:
Several transmission embodiments selectively communicate rotary drive to an orbiting scroll to achieve capacity modulation. In these embodiments, when the motor is driven in a first direction, the orbiting scroll is driven at a rate which is equal to the motor speed. However, if the motor is driven in a reverse direction, the orbit rate of the orbiting scroll is reduced. The transmission ensures that the orbiting scroll member itself is driven in the proper forward direction regardless of whether the motor is being driven in forward or reverse.
摘要:
An improved method of aligning the bearing components within a scroll compressor includes the step of mounting the crankcase to be an interference fit within the center shell, and having a surface abutting a true upper surface of the shell. This ensures that the axis of the bearing in the crankcase is idealized and centered on the center axis of the center shell. At the same time, the lower bearing is mounted on the lower end cap, and is also cut to be concentric with a force fit outer surface of the end cap. This ensures the lower bearing is also centered on the inner periphery of the center shell. Once it is ensured the center shell is true, then it is also thus ensured the upper and lower bearings are aligned on a common axis. An improved lower bearing structure with a reverse taper is also disclosed.