摘要:
Improved component placement inspection and verification is performed by a pick and place machine. Improvements include stereovision imaging of the intended placement location; enhanced illumination to facilitate the provision of relatively high-power illumination in the restricted space near the placement nozzle(s); optics to allow image acquisition device to view the placement location from an angle relative to a plane of the placement location, thereby reducing the possibility of such images being obstructed by the component; techniques for rapidly acquiring images with commercially available CCD arrays such that acquisition of before and after images does not substantially impact system throughput; and image processing techniques to provide component inspection and verification information.
摘要:
Embodiments include measuring motion characteristics of the workpiece through the placement process. Since the component is placed on the workpiece with some force to ensure proper adhesion to the workpiece, some deflection of the workpiece is expected during the placement cycle. The placement force is adjusted to ensure that the component is safely placed into the solder paste or adhesive. Placement force is adjusted through a number of characteristics including: choice of spring tension in the nozzle; the length of the nozzle and the amount of over-travel into the board; the rigidity of the board and design; and the placement of the board support mechanisms. With proper adjustment of these characteristics and parameters, high quality placements onto the workpiece can be ensured.
摘要:
The present invention includes a method of determining a location of a component on a workpiece. A before-placement standard image is acquired of an intended placement location on a standard workpiece. Then, a standard component is placed upon the standard workpiece and the placement is verified. An after-placement standard image is acquired and a standard difference image is created from the before and after standard images. Then, a before-placement test image is acquired of an intended placement location on the workpiece. A component is then placed upon the workpiece, and after-placement test image is acquired. A test difference image is created from the before and after test images. A first offset is calculated between the before standard difference image and the before test image. Then, the test difference is transformed based on the first offset to generate a difference test image (DTR) that is registered to the standard difference image. The standard difference image is correlated to the registered difference test image (DTR) to generate a registration offset indicative of placement efficacy.
摘要:
A system for digital image recognition which combines sparse correlation with image pyramiding to reduce the number of pixels used in correlation provides effective recognition of a reference image template without exhaustive correlation of all pixels in the reference image template. An optimal sparse pixel set is selected from the pixels of the reference image template by correlating the reference image template against a search image scene which is to be searched. Such a sparse pixel set includes those pixels which are optimal in defining the correlation sensitive features of the reference image template. By terminating the accumulation of sparse pixels at an optimal point, performance is maximized without compromising accuracy of recognition. The resultant optimal sparse pixel set is then correlated against the pixels in the search image scene through a series of transformations to find a match of the reference image template within the search image scene.