摘要:
A method is used to identify and compensate for errors created by changes in the relative positions of a deposition unit and a vision system of a dispenser. The method includes calibrating the vision system, dispensing a pattern of features over a working area, moving the vision system over a deposition location to locate a deposition, obtaining an image of the deposition, tagging data associated with the image, calculating a relative distance between the deposition unit and the vision system, storing correction data with spatial location in a file for later use, and using the stored data to make small corrections prior to dispensing additional material.
摘要:
A method is used to identify and compensate for errors created by changes in the relative positions of a deposition unit and a vision system of a dispenser. The method includes calibrating the vision system, dispensing a pattern of features over a working area, moving the vision system over a deposition location to locate a deposition, obtaining an image of the deposition, tagging data associated with the image, calculating a relative distance between the deposition unit and the vision system, storing correction data with spatial location in a file for later use, and using the stored data to make small corrections prior to dispensing additional material.
摘要:
The present invention includes a method of determining a location of a component on a workpiece. A before-placement standard image is acquired of an intended placement location on a standard workpiece. Then, a standard component is placed upon the standard workpiece and the placement is verified. An after-placement standard image is acquired and a standard difference image is created from the before and after standard images. Then, a before-placement test image is acquired of an intended placement location on the workpiece. A component is then placed upon the workpiece, and after-placement test image is acquired. A test difference image is created from the before and after test images. A first offset is calculated between the before standard difference image and the before test image. Then, the test difference is transformed based on the first offset to generate a difference test image (DTR) that is registered to the standard difference image. The standard difference image is correlated to the registered difference test image (DTR) to generate a registration offset indicative of placement efficacy.
摘要:
Machine (1) comprising a placement element (7) connected to an imaging device (6), and comprising an optical system (4) for detecting the position of a component (16) relative to the placement element (7) by means of the imaging device (6). The optical system (4) comprises at least one marking element (11). The marking element (11) and the component (16) can be displayed simultaneously by means of the optical system (4) in an image (17) to be made by means of the imaging device (6).
摘要:
An apparatus for three dimensional inspection of an electronic part which has a camera and illuminator for imaging a first view of the electronic part. An optical element is positioned to reflect a different view of the electronic part into the camera, and the camera thus provides an image of the electronic part having differing views of the electronic part. An image processor applies calculations on the differing views to calculate a three dimensional position of at least one portion of the electronic part.
摘要:
A method for processing substrates, in particular wafers, masks or flat panel displays, with a semi-conductor industry machine, wherein a computer-supported process is used to determine the presence and/or position and/or orientation of the substrate. Further, a system designed to execute the method. The computer-supported process includes an artificial neural network.
摘要:
A method for processing substrates, in particular wafers, masks or flat panel displays, with a semi-conductor industry machine, wherein a computer-supported process is used to determine the presence and/or position and/or orientation of the substrate. Further, a system designed to execute the method. The computer-supported process includes an artificial neural network.
摘要:
A test device is disclosed for verifying the accuracy of a pick and place process. The test device includes a surface configured to receive components, and a ferromagnetic layer located under the surface. A system is further disclosed including the test device and a plurality of components each including a magnetic element, the plurality of components configured to be received by a plurality of pockets of the test device. A method of picking and placing a component onto the test device is further disclosed.
摘要:
A method for placing electronic components onto a circuit board, comprising the following steps: Placing a component to be placed of a first component type into a starting position; creating a component image of the component to be placed in the starting position; creating a circuit board region image of a circuit board of a first circuit board region type; calculating a travel path for moving the component to be placed into a final position on the circuit board based upon an image overlay of the component image and a previously saved reference component image of a reference component of the first component type, and based upon a previously saved reference travel path of the reference component from a reference starting position into a reference final position on a reference circuit board of the first circuit board region type, and based upon an image overlay of the circuit board region image and a previously saved reference circuit board region image of the reference circuit board; moving the component to be placed along the travel path into the final position.
摘要:
Performing an inspection based on a shape of a solder fillet and setting a standard of the inspection. In order to set the standard of the inspection by a method for determining whether the solder fillet of a component mounted on a board is proper by obtaining a calculation of a numerical parameter indicating a three-dimensional shape of the solder fillet, a setting screen including an image display region indicating an image of a component of a setting target and an inspection standard list is displayed to receive a user manipulation. A list in which an item name of each of plural inspection items is correlated with an input field of a standard value of a numerical parameter measured by the inspection item is displayed in the inspection standard list.