摘要:
A bent layered structure is disclosed having a top conductive layer and a dielectric layer. The dielectric layer is a polyimide derived from at least 70 mole percent aromatic dianhydride based upon total dianhydride content of the polyimide and at least 70 mole percent aromatic diamine based upon total diamine content of the polyimide. The bent layered structure has a radius of at least 2 mm and a bend angle of at least 45 degrees at least once along a longitudinal or at least once parallel to the longitudinal axis or both and maintains a 150 to 350 V/micron breakdown voltage.
摘要:
A light emitting diode system is disclosed having a bent layered structure conformed to a least a portion of a self-supporting three dimensional heat sink and maintains a breakdown voltage from 150 to 350 V/micron. The bent layered structure has an electrical circuit, a dielectric layer and at least one LED package, LED chip on board or mixtures thereof attached to the electrical circuit. The dielectric layer is a polyimide derived from at least 70 mole percent aromatic dianhydride based upon total dianhydride content of the polyimide and at least 70 mole percent aromatic diamine based upon total diamine content of the polyimide.
摘要:
A flexible layered structure is disclosed having a flexible top conductive layer, a flexible bottom heat sink layer and a flexible dielectric middle layer. The combination has a longitudinal axis and a plurality of defined positions spaced along the longitudinal axis. The defined positions can be used for aligning a circuit and/or for the placement of LED lights. The flexible layered structure can be easily bent to form a LED substrate for shining light in more than one direction while efficiently removing heat arising from the LEDs.
摘要:
A flexible layered structure is disclosed having a flexible top conductive layer, a flexible bottom heat sink layer and a flexible dielectric middle layer. The combination has a longitudinal axis and a plurality of defined positions spaced along the longitudinal axis. The defined positions can be used for aligning a circuit and/or for the placement of LED lights. The flexible layered structure can be easily bent to form a LED substrate for shining light in more than one direction while efficiently removing heat arising from the LEDs.
摘要:
The mounting structure of a power device is simplified so as to reduce cost while achieving improvements in heat dissipation and reliability. A power module 100 is comprised of a metal wiring board 13, a power device 11 disposed on an upper surface of the metal wiring board 13 via a solder layer 12, a metal heat dissipating plate 15 disposed on a lower surface of the metal wiring board 13, and a heat sink 19 disposed on a lower surface of the metal heat dissipating plate 15. A resin-based insulating layer 14 is disposed between any desired two of the aforementioned layers.