摘要:
A network device may handle packet congestion in a network. In one implementation, the network device may receive a packet associated with a quality of service priority class and with a connection to a user device. The network device may include an output queue associated with the priority class of the packet. The output queue may be congested. The network device may determine whether the connection associated with the packet is a guaranteed bit rate connection. The network device may queue the packet according to a first action policy function when the connection associated with the packet is a guaranteed bit rate connection and may queue the packet according to a second action policy function when the connection associated with the packet is not a guaranteed bit rate connection.
摘要:
A device receives Internet protocol (IP) addresses and metrics associated with network nodes of a network, and stores the IP addresses and the metrics in a route table. The device receives, from a user equipment, a request to connect to the network, and determines a particular network node, of the network nodes, to which to forward a communication session of the user equipment, based on the request and based on the metrics stored in the route table. The device forwards the communication session of the user equipment to the particular network node, and the particular network node enables the user equipment to connect to the network.
摘要:
A device receives Long Term Evolution (LTE) architecture information, Internet protocol (IP) network architecture information, and transport network information, and determines traffic patterns of a LTE network based on the LTE architecture information. The device also generates proposed LTE metropolitan optical transport networks (OTNs) based on the determined traffic patterns and one or more of the LTE architecture information, the IP network architecture information, and the transport network information. The device further determines transit switching for the proposed LTE metropolitan OTNs, and selects, from the proposed LTE metropolitan OTNs, a metropolitan OTN optimized for the LTE network.
摘要:
A network device establishes first and second Ethernet link aggregation groups (LAGs) at a first access site of an optical transport network (OTN), and creates a first optical channel (OCh) LAG subpath from the first Ethernet LAG, via a second access site of the OTN, to an Ethernet LAG at a third access site of the OTN. The network device also creates a second OCh LAG subpath from the first Ethernet LAG, via a distribution site of the OTN, to the Ethernet LAG at the third access site, and creates a first optical data unit (ODUk) LAG subpath from the second Ethernet LAG to an Ethernet LAG at the second access site. The network device further creates a second ODUk LAG subpath from the second Ethernet LAG, via the distribution site and the third access site, to the Ethernet LAG at the second access site.