Automated vehicle road model definition system

    公开(公告)号:US10101746B2

    公开(公告)日:2018-10-16

    申请号:US15244474

    申请日:2016-08-23

    Abstract: A road-model-definition system suitable for an automated-vehicle includes a lidar-unit and a controller. The lidar-unit is suitable to mount on a host-vehicle. The lidar-unit is used to provide a point-cloud descriptive of an area proximate to the host-vehicle. The controller is in communication with the lidar-unit. The controller is configured to: select ground-points from the point-cloud indicative of a travel-surface, tessellate a portion of the area that corresponds to the travel-surface to define a plurality of cells, determine an orientation of each cell based on the ground-points within each cell, define a road-model of the travel-surface based on the orientation of the cells, and operate the host-vehicle in accordance with the road-model.

    GROUND CLASSIFIER SYSTEM FOR AUTOMATED VEHICLES

    公开(公告)号:US20180203113A1

    公开(公告)日:2018-07-19

    申请号:US15407404

    申请日:2017-01-17

    Abstract: A ground-classifier system that classifies ground-cover proximate to an automated vehicle includes a lidar, a camera, and a controller. The lidar that detects a point-cloud of a field-of-view. The camera that renders an image of the field-of-view. The controller is configured to define a lidar-grid that segregates the point-cloud into an array of patches, and define a camera-grid that segregates the image into an array of cells. The point-cloud and the image are aligned such that a patch is aligned with a cell. A patch is determined to be ground when the height is less than a height-threshold. The controller is configured to determine a lidar-characteristic of cloud-points within the patch, determine a camera-characteristic of pixels within the cell, and determine a classification of the patch when the patch is determined to be ground, wherein the classification of the patch is determined based on the lidar-characteristic and the camera-characteristic.

    OBJECT DETECTION SYSTEM
    3.
    发明申请

    公开(公告)号:US20180203124A1

    公开(公告)日:2018-07-19

    申请号:US15407419

    申请日:2017-01-17

    CPC classification number: G01S17/936 G01S13/865 G01S17/42 G01S17/89

    Abstract: An object detection system includes a lidar-unit and a controller. The controller defines an occupancy-grid that segregates the field-of-view into columns, determine a first-occupancy-status of a column based on first-cloud-points detected by the lidar-unit in the column by a first-scan, determine a second-occupancy-status of the column based second-cloud-points detected in the column by a second-scan, determine a first-number of the first-cloud-points and a second-number of the second-cloud-points, and determine a dynamic-status of the column only if the column is classified as occupied by either the first-occupancy-status or the second-occupancy-status. The dynamic-status of the column is determined to be moving when a count-difference between the first-number and the second-number is greater than a difference-threshold, and the dynamic-status of the column is determined to be static when the count-difference is not greater than the difference-threshold and a registration-factor that aligns the first-cloud-points to the second-cloud-points is less than a registration-threshold.

    Lidar object detection system for automated vehicles

    公开(公告)号:US10031231B2

    公开(公告)日:2018-07-24

    申请号:US15262467

    申请日:2016-09-12

    Abstract: An object-detection system suitable for an automated vehicle includes a lidar and a controller. The lidar is used to detect a point-cloud that is organized into a plurality of scan-lines. The controller is in communication with the lidar. The controller is configured to classify each detected point in the point-cloud as a ground-point or a non-ground-point, define runs of non-ground-points, where each run characterized by one or multiple instances of adjacent non-ground-points in a scan-line separated from a subsequent run of one or more non-ground-points by at least one instance of a ground-point, define a cluster of non-ground-points associated with the object. The cluster is characterized by a first run from a first scan-line being associated with a second run from a second scan-line when a first point from the first run is displaced less than a distance-threshold from a second point from the second run.

    VISION ALGORITHM PERFORMANCE USING LOW LEVEL SENSOR FUSION

    公开(公告)号:US20170242117A1

    公开(公告)日:2017-08-24

    申请号:US15047863

    申请日:2016-02-19

    Abstract: A method and system that performs low level fusion of Radar or LiDAR data with an image from a camera. The system includes a radar-sensor, a camera, and a controller. The radar-sensor is used to detect a radar-signal reflected by an object in a radar-field-of-view. The camera is used to capture an image of the object in a camera-field-of-view that overlaps the radar-field of view. The controller is in communication with the radar-sensor and the camera. The controller is configured to determine a location of a radar-detection in the image indicated by the radar-signal, determine a parametric-curve of the image based on the radar detections, define a region-of-interest of the image based on the parametric-curve derived from the radar-detection, and process the region-of-interest of the image to determine an identity of the object. The region-of-interest may be a subset of the camera-field-of-view.

Patent Agency Ranking