Abstract:
A filter device comprises: a filter capacitor portion having one set of ends connected to the AC voltage unit, and the other set of ends connected to DC terminals of the semiconductor switching unit via a low impedance element, wherein both set of ends of the filter capacitor portion and the DC terminals of the semiconductor switching unit are static ground terminals of the power converter; a filter inductance portion a first set of connection terminals connected to the AC voltage unit, a second set of connection terminals connected to the AC terminals of the semiconductor switching unit, a third set of connection terminals connected to one of the static ground terminals of the power converter, and a fourth set of connection terminals; and a compensation portion having one end connected to the fourth set of connection terminals and the other end connected to the ground.
Abstract:
A power conversion apparatus is disclosed in the present application. The power conversion apparatus comprises: a power converter comprising an energy-storage magnetic component, and a filter comprising an inductor component and a two-port network connected the energy-storage magnetic component and the inductor component, wherein a series resonance is formed by the two-port network and a mutual inductance which is formed by a coupling between the energy-storage magnetic component and the inductor component.
Abstract:
A center-tapped transformer comprises a magnetic core, and windings including a primary winding and a secondary windings. The primary winding comprises at least one layer of a primary effective conductor, and the secondary winding comprises at least one layer of a first secondary effective conductor and at least one layer of a second secondary effective conductor. The total thickness hp of the primary effective conductor and the total thickness hs of the secondary effective conductor satisfy: 0.65
Abstract:
The present disclosure provides a transformer including at least one magnetic core each having at least one window; one primary side winding passing through the at least one window, a wire forming the primary side winding being sequentially covered with a first solid insulating layer, a grounded shielding layer and a second solid insulating layer from inside to outside along a radial direction of the wire, the grounded shielding layer being connected to a reference ground; and at least one secondary side winding, each passing through the at least one window, the primary side winding having a first voltage with respect to the reference ground, the secondary side winding having a second voltage with respect to the reference ground, and the second voltage being greater than 50 times of the first voltage.
Abstract:
A center-tapped transformer comprises a magnetic core, and windings including a primary winding and a secondary windings. The primary winding comprises at least one layer of a primary effective conductor, and the secondary winding comprises at least one layer of a first secondary effective conductor and at least one layer of a second secondary effective conductor. The total thickness hp of the primary effective conductor and the total thickness hs of the secondary effective conductor satisfy: 0.65
Abstract:
A power conversion circuit comprises an AC source, a power conversion unit, a filter inductor unit and a common mode noise suppression circuit. The power conversion unit has DC terminals and AC terminals. The filter inductor unit has first and second terminals, being respectively connected to the AC source and the AC terminals of the power conversion unit. The common mode noise suppression circuit has a capacitive impedance network with first and second terminals, and an impedance balancing network with first and second terminals. The second terminals of the capacitive impedance network are connected to the first terminals of the impedance balancing network, the first terminals of the capacitive impedance network are connected to the first terminals of the filter inductor unit, and the second terminals of the impedance balancing network are connected to the DC terminals of the power conversion unit.
Abstract:
A power conversion apparatus, comprising: a power conversion circuit comprising an AC source; a power conversion unit with DC terminals and AC terminals; a filter inductor unit including first and second terminals, the first terminals of the filter inductor unit being connected to the AC source, the second terminals of the filter inductor unit being connected to the AC terminals of the power conversion unit; a common mode noise suppression circuit comprising a capacitive impedance network including first and second terminals; an impedance balancing network including first and second terminals; the second terminals of the capacitive impedance network are connected to the first terminals of the impedance balancing network, the first terminals of the capacitive impedance network are connected to the first terminals of the filter inductor unit, and the second terminals of the impedance balancing network are connected to the DC terminals of the power conversion unit.
Abstract:
There is provided a magnetic core component and the gap control method thereof. The magnetic core component includes a first magnetic component, a second magnetic component and a first gap control structure disposed therebetween. The first gap control structure includes thixotropic material and is applied on the first magnetic component and is cured, the second magnetic component is disposed on the cured first gap control structure, and a gap between the first magnetic component and the second magnetic component is controlled by an effective height of the first gap control structure. The gap control structure has minimum variability after it is cured, and its effective height can be always kept at a required gap height.
Abstract:
An insulated housing, in a cylindrical structure, includes an inner metal layer, an insulating layer and an outer metal coating. The insulating layer is positioned between the inner metal layer and the outer metal coating. In any end of the cylindrical structure, both a distance from the end of the inner metal layer to the end of the cylindrical structure and a distance from the end of the outer metal coating to the end of the cylindrical structure are not equal to zero, and the distance from the end of the inner metal layer to the end of the cylindrical structure is larger than the distance from an end of the outer metal coating to the end of the cylindrical structure. The inner metal layer is composed of one first metal cylinder and two second metal cylinders respectively disposed on the both ends of the first metal cylinder.
Abstract:
A magnetic component and a transformer are provided by the present disclosure. The magnetic component includes: at least three core columns; and a winding wound around at least one of the at least three core columns; wherein a medium having a relative initial permeability equal to 1 is disposed on at least one side of the at least three core columns. In the present disclosure, a conventional magnetic cover board with a high relative initial permeability is replaced by a medium with a relative initial permeability (ur) satisfied ur=1, such as air or a cover board.