摘要:
A process is described for separating C.sub.4 + hydrocarbons in high recovery and high purity from a feed gas comprising about 0-5% C.sub.5 and heavier hydrocarbons, 1-10% C.sub.4 hydrocarbons, 0-10% C.sub.3 hydrocarbons, 0-10% C.sub.2 hydrocarbons and the balance CH.sub.4 and light inerts. Efficient separation is effected by using a dephlegmator cycle employing only internal refrigeration.
摘要:
The present invention relates to a process for the recovery of ethylene from a feed gas containing ethane, methane and other light gases, e.g. cracked gas or refinery off-gases, wherein ethylene is condensed in two stages, preferably rectified, and fed to an integrated demethanizer column. Refrigeration for the process is provided by an integrated combination of work expansion of rejected light gases, by vaporization of separated ethane at low partial pressure but high total pressure, and by a mixed refrigerant system. The process results in the separation and purification of ethylene from the feed gas stream while significantly reducing the energy consumption to do so.
摘要:
A process for cooling, phase separating, rectifying and stripping a hydrocarbon containing feed gas stream to recover a heavy hydrocarbon product wherein a predominant amount of the refrigeration for the process is provided from a single loop vapor recompression refrigerator employing a mixed refrigerant.
摘要:
Light components are stripped from a multicomponent liquid feed mixture in a core type plate-fin heat exchanger by heating and partially vaporizing the mixture during downward flow in one of a plurality of multichannel flow passageways in the exchanger. The vapor thus formed flows upward and promotes vaporization of dissolved light components from the liquid to yield a liquid product substantially free of lighter components. The passageways are disposed in indirect heat exchange with one or more additional groups of passageways, and heat for partial vaporization of the downward-flowing liquid feed mixture is provided by indirect heat exchange with a condensing process stream. Alternatively, this heat is provided by a bottoms stream recovered from distillation of the stripped liquid product withdrawn from the core type plate-fin heat exchanger.
摘要:
A closed-loop mixed refrigerant cycle provides efficient low-level refrigeration for recovering ethylene from a mixed gas feed. Compressed mixed refrigerant vapor is condensed at -20.degree. F. to -50.degree. F. and is subcooled to -175.degree. F. to -225.degree. F. by indirect heat exchange with cold H.sub.2, methane, and expander streams from elsewhere in the ethylene plant. A portion of the subcooled refrigerant may be flashed to provide additional subcooling of the main mixed refrigerant stream. Subcooled mixed refrigerant is subsequently flashed to provide very low temperature level refrigeration for feed condensation and demethanizer overhead condenser duties.
摘要:
A method is disclosed for cooling, condensing and subcooling a substantially single component gas stream by passing the gas stream through a heat exchange relationship with a vaporizing multicomponent stream so that carry-up of the condensed liquid phase is maintained without condensed phase backmixing and pot-boiling of the coolant stream is avoided. The single component gas stream is passed through a cold-end up heat exchanger having a serpentine pathway for the gas stream comprising a series of horizontal passes separated by horizontal dividers and alternatingly connected by turnaround passes at each end. The method is particularly applicable to the condensing of a recycle methane stream in a nitrogen rejection process which uses a methane heat pump cycle to provide refrigeration.
摘要:
Enhanced recovery of ethane and ethylene from demethanizer overhead is obtained by subjecting the uncondensed vapor effluent from the main reflux condenser to further condensation and accompanying rectification in a dephlegmator and returning the liquid condensate from the dephlegmator to the demethanizer column. One or more of the refrigerants employed in the dephlegmator comprises vapors leaving the dephlegmator and cooled by pressure reduction.
摘要:
Olefins are recovered from thermally cracked gas or fluid catalytic cracking off gas by cooling the gas to condense a portion of the hydrocarbons, removing hydrogen from the noncondensed gas, and condensing the remaining hydrocarbons in a cold condensing zone using a dephlegmator which operates above about -166.degree. F. This mode of operation minimizes the amount of methane in the condensate which is further processed in demethanizer column(s) and permits the condensation of ethylene at warmer temperatures than possible using a partial condenser in the cold condensing zone. The use of a dephlegmator at temperatures above about -166.degree. F. minimizes or eliminates the formation and accumulation of unstable nitrogen compounds in the ethylene recovery system. Hydrogen is removed from the noncondensed gas in a process selected from polymeric membrane permeation, adsorptive membrane permeation, or pressure swing adsorption.
摘要:
The invention provides a liquids recovery process useful for the separation and recovery of C.sub.3.sup.+ liquid hydrocarbons from gas mixtures containing high concentrations of lighter components such as are produced by the dehydrogenation of liquefied petroleum gases or by the catalytic cracking of heavy oils. The recovery process employs an absorption refrigeration cycle to supply high level refrigeration to the process; the absorption cycle utilizes low pressure steam or a heated fluid derived from secondary heat recovery of a process flue gas to effect heating in the absorption refrigeration cycle.
摘要:
A method is disclosed for cooling a multicomponent gas stream containing variable amounts of the components by passing the gas stream through a heat exchange relationship with a fluid coolant stream so that carry-up of the condensed phase is maintained without condensed phase backmixing over the compositional range of the multicomponent gas stream. The gas stream is cooled by passing it through a cold-end up heat exchanger having a serpentine pathway for the multicomponent gas stream comprising a series of horizontal passes separated by horizontal dividers and alternatingly connected by turnaround passes at each end, the cross-sectional area of at least one horizontal pass nearer the cold-end being less than the cross-sectional area of a horizontal pass nearer the warm-end. The method is particularly applicable to cooling a natural gas feed stream having a variable nitrogen content in a nitrogen rejection process.