摘要:
Components (30) in the interior of an EUV lithography device for extreme ultraviolet and soft X-ray wavelength range are cleaned by igniting a plasma, adjacent to the component (30) to be cleaned, using electrodes (29), wherein the electrodes (29) are adapted to the form of the component (30) to be cleaned. The residual gas atmosphere is measured spectroscopically on the basis of the plasma. An emission spectrum is preferably recorded in order to monitor the degree of cleaning. An optical fiber cable (31) with a coupling-in optical unit (32) is advantageously used for this purpose. Moreover, in order to monitor the contamination in the gas phase within the vacuum chambers during the operation of an EUV lithography device, it is proposed to provide modules configured to initiate a gas discharge and to detect radiation emitted on account of the gas discharge. The contamination in the gas phase can be deduced from the analysis of the measured spectrum.
摘要:
Components (30) in the interior of an EUV lithography device for extreme ultraviolet and soft X-ray wavelength range are cleaned by igniting a plasma, adjacent to the component (30) to be cleaned, using electrodes (29), wherein the electrodes (29) are adapted to the form of the component (30) to be cleaned. The residual gas atmosphere is measured spectroscopically on the basis of the plasma. An emission spectrum is preferably recorded in order to monitor the degree of cleaning. An optical fiber cable (31) with a coupling-in optical unit (32) is advantageously used for this purpose. Moreover, in order to monitor the contamination in the gas phase within the vacuum chambers during the operation of an EUV lithography device, it is proposed to provide modules configured to initiate a gas discharge and to detect radiation emitted on account of the gas discharge. The contamination in the gas phase can be deduced from the analysis of the measured spectrum.
摘要:
Disclosed is a lens module, especially a projection lens for semiconductor lithography, comprising at least one replaceable optical element that is disposed in a lens housing. At least one gas exchange device is positioned in an area of the replaceable optical element in such a way that a receiving zone for the replaceable optical element can be flushed when the optical element is replaced.
摘要:
Disclosed is a lens module, especially a projection lens for semiconductor lithography, comprising at least one replaceable optical element that is disposed in a lens housing. At least one gas exchange device is positioned in an area of the replaceable optical element in such a way that a receiving zone for the replaceable optical element can be flushed when the optical element is replaced.
摘要:
A method and a device for replacing objective parts, especially of a projection or illumination objective for microlithography in which an objective having an objective interior and objective parts provided therein is provided. At least one objective part is replaceably accommodated in the objective. Immediately prior to installation in the objective, the replaceable objective part is cleaned outside the objective interior in at least one cleaning room sealed off from the ambient atmosphere. Immediately after cleaning, the replaceable objective is installed in the objective without contact with the normal ambient atmosphere.
摘要:
Disclosed is a lens module, especially a projection lens for semiconductor lithography, comprising at least one replaceable optical element that is disposed in a lens housing. At least one gas exchange device is positioned in an area of the replaceable optical element in such a way that a receiving zone for the replaceable optical element can be flushed when the optical element is replaced.