摘要:
Components (30) in the interior of an EUV lithography device for extreme ultraviolet and soft X-ray wavelength range are cleaned by igniting a plasma, adjacent to the component (30) to be cleaned, using electrodes (29), wherein the electrodes (29) are adapted to the form of the component (30) to be cleaned. The residual gas atmosphere is measured spectroscopically on the basis of the plasma. An emission spectrum is preferably recorded in order to monitor the degree of cleaning. An optical fiber cable (31) with a coupling-in optical unit (32) is advantageously used for this purpose. Moreover, in order to monitor the contamination in the gas phase within the vacuum chambers during the operation of an EUV lithography device, it is proposed to provide modules configured to initiate a gas discharge and to detect radiation emitted on account of the gas discharge. The contamination in the gas phase can be deduced from the analysis of the measured spectrum.
摘要:
An EUV (extreme ultraviolet) lithography apparatus (1) including: a housing (1a) enclosing an interior (15), at least one reflective optical element (5, 6, 8, 9, 10, 14.1 to 14.6) arranged in the interior (15), a vacuum generating unit (1b) generating a residual gas atmosphere in the interior (15), and a residual gas analyzer (18a, 18b) detecting at least one contaminating substance (17a) in the residual gas atmosphere. The residual gas analyzer (18a) has a storage device (21) having an ion trap for storing the contaminating substance (17a). Additionally, a method for detecting at least one contaminating substance by residual gas analysis of a residual gas atmosphere of an EUV lithography apparatus (1) having a housing (1a) having an interior (15), in which at least one reflective optical element (5, 6, 8, 9, 10, 14.1 to 14.6), is arranged, wherein the contaminating substance (17a) is stored in a storage device (21) in order to carry out the residual gas analysis.
摘要:
The invention relates to an EUV lithography apparatus with at least one EUV-reflective optical surface and a cavity ringdown reflectometer adapted to determine the contamination status of the EUV-reflective optical surface for at least one contaminating substance by determining the reflectivity of the EUV-reflective optical surface for radiation at a measuring wavelength (λm). The invention further relates to a method for determining the contamination status of at least one EUV-reflective optical surface arranged in an EUV lithography apparatus for at least one contaminating substance comprising determining the reflectivity of the EUV-reflective optical surface for radiation at a measuring wavelength (λm) using a cavity ringdown reflectometer.
摘要:
A method for preventing contaminating gaseous substances (18) from passing through an opening (17b) in a housing (4a) of an EUV lithography apparatus (1), wherein at least one optical element for guiding EUV radiation (6) is arranged in the housing (4a). The method involves: generating at least one gas flow (21a, 21b) which deflects the contaminating substances (18, 18′), and in particular is directed counter to the flow direction (Z) thereof, in the region of the opening (17b). The gas flow (21a, 21b) and the EUV radiation (6) are generated in pulsed fashion and the pulse rate of the gas flow (21a, 21b) is defined in a manner dependent on the pulse rate of the contaminating substances (18, 18′) released under the action of the pulsed EUV radiation (6), wherein both pulse rates are preferably equal in magnitude, and wherein, in the region of the opening (17b), the gas pulses temporally overlap the pulses of the contaminating substances (18, 18′). An associated EUV lithography apparatus at which the method can be carried out is also disclosed.
摘要:
An optical arrangement, in particular a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) that encloses an interior space (15); at least one, in particular reflective, optical element (4 to 10, 12, 14.1 to 14.6) that is arranged in the housing (2); at least one vacuum generating unit (3) for generating a vacuum in the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1 to 18.10) that is arranged in the interior space (15) of the housing (2) and that encloses at least the optical surface (17, 17.1, 17.2) of the optical element (4 to 10, 12, 14.1 to 14.5), wherein a contamination reduction unit is associated with the vacuum housing (18.1 to 18.10), which contamination reduction unit reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).