摘要:
Gasification is performed under pressures in the range from 5 bars to 150 bars with oxygen, steam and/or carbon dioxide as gasifying agents. Pellets are fed to the top of a fixed bed in the gasification reactor. The gasifying agents are introduced into the fixed bed from below. Mineral constituents are withdrawn as solid ash or liquid slag from the lower end of the fixed bed. The pellets are made from fine-grained hard coal which has a particle size below 1 mm and contains 3 to 10 wt. % of fines having particle sizes not in excess of 2 micrometers and 70 to 80 wt. % of particles not in excess of a fraction not in excess of 63 micrometers. The fine-grained hard coal is mixed with bentonite to obtain a mixture which contains 1 to 8 wt. % bentonite. With an addition of water, the mixture is shaped to form pellets which contain 15 to 25 wt. % water. The pellets are fed in an undried, moist, plastically deformable state to the top of the fixed bed.
摘要:
The biomass, particularly lump wood, is supplied to a shaft reactor at its top and is initially preheated to temperatures of about 150.degree. to 280.degree. C. and dried by a counterflowing hot gas. This is followed by a treatment in an underlying carbonizing zone, the upper portion of which is supplied with hot purging gas at a temperature of 250.degree. to 600.degree. C. The hot purging gas flows downwardly through the carbonizing zone co-currently with the wood. A gas mixture which contains purging gas and gas produced by carbonization is withdrawn from the lower portion of the carbonizing zone and is at least in part combusted outside the shaft reactor to produce a combustion gas, which is used at least in part as hot purging gas.
摘要:
The invention relates to a method for a high temperature short-time distillation of residual oil. The method according to the invention is characterized by a technically simple recovery of a small residual fraction from a gas and/or oil vapour mixture produced by a mixing apparatus (1). Said small residual fraction contains large quantities of undesirable polluting catalytic substances (CCR, Ni, V, asphaltenes). For this purpose, the gas and/or oil vapour mixture produced by the mixing apparatus (1) is diluted with gas or water vapour in a column (17) at a temperature of 450° C. in such a way that a high boiling fraction, which has a high content of the pollutant substances and whose initial boiling point is higher than 450° C., is condensed and extracted. Another realization of the method consists in introducing a non condensed oil produced in the column (17) into a fractionating column (19), where said oil is decomposed in order to produce a depressurized gas oil fraction having a low content of pollutants and a benzine/gas oil fraction.
摘要:
An improved process for deasphalting a residua feedstock by use of a short vapor residence time process unit comprised of a horizontal moving bed of fluidized and/or stirred hot particles. The vapor phase product stream from said process unit is passed to a soaker drum where a high boiling fraction is separated and recycled to the process unit after undergoing reactions causing molecular weight growth. This reactive recycle using the soaker drum results in substantially improved qualities of the liquid products compared with what is achieved by once-through residua deasphalting process alternatives.
摘要:
The aim of the invention is to improve an existing mixing device in such a manner that for a predetermined reactor length, retention time is increased and the material which is to be processed is transported at essentially the same speed irrespective of the radial distance thereof from the rotational axis. As a result, at least one row of blades is arranged on each shaft and each row of blades comprises at least two individual blades and the blades are fixed to the shaft at an incidence angle α in relation to the longitudinal axis of the shaft. The blades are curved in themselves, such that the blades form an angle of incidence α at the fixing point on the shaft and an angle of incidence β on the outer diameter DA. By virtue of the fact that a row of individual blades is used instead of a continuous screw, efficient mixing of charging material and coke can be achieved, the angle of incidence is reduced from the inside to the outside and the axial speed of the particles which are to be mixed is evened out on the total cross section of the reactor, thereby enabling a stop-type flow to be obtained.
摘要:
Residual oil from the processing of crude oil, natural bitumen or oil sand is mixed in a mixer with granular, hot coke as heat carrier (heat carrier coke) in a weight ratio of 1:3 to 1:30, where on the granules of the heat carrier coke there is first of all formed a liquid residue film which partly evaporates in the mixer. Gases and vapors and moist, sticky coke are withdrawn from the mixer. The mixture of coke and residual oil is introduced into a subsequently connected stirred tank in which the mixture slowly moves downwards while being stirred mechanically at a temperature of 450 to 600° C. and preferably at 480 to 550° C. Dry, flowable coke is withdrawn from the stirred tank. Usually, the dwell time of the heat carrier coke in the stirred tank is 1 to 30 minutes.
摘要:
The invention relates to a method for a high temperature short-time distillation of residual oil. The method according to the invention is characterized by a technically simple recovery of a small residual fraction from a gas and/or oil vapour mixture produced by a mixing apparatus (1). Said small residual fraction contains large quantities of undesirable polluting catalytic substances (CCR, Ni, V, asphaltenes). For this purpose, the gas and/or oil vapour mixture produced by the mixing apparatus (1) is diluted with gas or water vapour in a column (17) at a temperature of 450° C. in such a way that a high boiling fraction, which has a high content of the pollutant substances and whose initial boiling point is higher than 450° C., is condensed and extracted. Another realization of the method consists in introducing a non condensed oil produced in the column (17) into a fractionating column (19), where said oil is decomposed in order to produce a depressurized gas oil fraction having a low content of pollutants and a benzine/gas oil fraction.
摘要:
The present invention relates to a process of recovering monomeric esters of substituted or unsubstituted acrylic acid from polymer material having corresponding structural units by depolymerization by means of a fine-grained heat-transfer medium which is maintained above the depolymerization temperature of the polymer material. In a reactor, the polymer material is brought in contact with hot, mechanically fluidized heat-transfer medium. The resulting vapors are withdrawn and condensed, where the hot heat-transfer medium is continuously supplied at one end of the reactor, and cooled heat-transfer medium is discharged at the other end.
摘要:
The aim of the invention is to improve an existing mixing device in such a manner that for a predetermined reactor length, retention time is increased and the material which is to be processed is transported at essentially the same speed irrespective of the radial distance thereof from the rotational axis. As a result, at least one row of blades is arranged on each shaft and each row of blades comprises at least two individual blades and the blades are fixed to the shaft at an incidence angle α in relation to the longitudinal axis of the shaft. The blades are curved in themselves, such that the blades form an angle of incidence α at the fixing point on the shaft and an angle of incidence β on the outer diameter DA. By virtue of the fact that a row of individual blades is used instead of a continuous screw, efficient mixing of charging material and coke can be achieved, the angle of incidence is reduced from the inside to the outside and the axial speed of the particles which are to be mixed is evened out on the total cross section of the reactor, thereby enabling a stop-type flow to be obtained.
摘要:
High temperature flash distillation, for treating residual oils originating from crude oil refining, natural bitumen and/or tar sands, comprises feeding the oil to a mixer with granular hot coke, which serves as a thermal transfer medium. In mixing, 60-90% of the oil is vaporized. The non-vaporized fraction includes metal-containing asphaltenes. This fraction is further converted in the mixer, to oil vapor, gas and coke. Gases and vapor are withdrawn from the mixer, separately from the coke. The vapor phase is cooled and condensed to produce product oil. The gas itself is a further product. The coke is reheated and recycled to the mixer as the thermal transfer medium.