摘要:
A read/write head with a bottom shield on a slider substrate and a shared shield spaced apart from the bottom shield. A write head is deposited on the shared shield. A read sensor is spaced apart by reader magnetic gaps from the bottom shield and the shared shield. Electrically insulating layers in the reader magnetic gaps form a thermal resistance between the read sensor and the shields. A thermally conducting nonmagnetic layer in a reader magnetic gap reduces the thermal resistance without a corresponding reduction in the reader magnetic gaps.
摘要:
The present invention includes magnetic write elements with portions formed a nanophase high magnetic moment material to enable further increases in areal density in magnetic recording. The nanophase deposited high magnetic moment material comprises coated nanoclusters and nanolaminated cluster films that are deposited to form nanophase high magnetic moment material portions of a write pole and SUL layer in perpendicular recording media. The nanophase write poles exhibit high magnetic moments and are generally compatible with conventional writer head fabrication techniques.
摘要:
A spin polarization enhancement artificial (SPEA) magnet comprises combinations of positive spin asymmetry interfaces and inverse spin asymmetry interfaces arranged antiferromagnetically such that current passed through the SPEA magnet has enhanced spin polarization. The SPEA magnet additionally may combine bulk material properties of electron scattering to either supplement or replace the interfacial spin differentiation. A basic functional unit of the SPEA magnet includes two ferromagnetic layers separated by two spacer layers. Each spacer forms an interface such that adjacent ferromagnetic layers produce different spin symmetry. Antiferromagnetic arrangement of adjacent ferromagnetic layers coordinates the different spin symmetries such that a single spin state is selected and also provides additional stabilization to the SPEA magnet.
摘要:
The application discloses pole tip shield assemblies for a magnetic write element. The shield assemblies disclosed include side shields to limit adjacent track interference. The side shields are truncated or notched at a midpoint to form an expanded non-magnetic gap along a trailing portion of the pole tip to enhance write field and/or field gradient. The expanded non-magnetic gap region is larger than the non-magnetic gap region along a leading portion of the pole tip.
摘要:
The magnetoresistive sensor has a bottom shield, a nonmagnetic metallic pedestal, a bottom reader gap, a biasing element, a magnetoresistive stack, current leads, a top reader gap, and a top shield. The nonmagnetic metallic pedestal is positioned on a portion of the bottom shield and the nonmagnetic metallic pedestal has a width less than the width of the bottom shield. The bottom reader gap is positioned on the nonmagnetic metallic pedestal and on the bottom shield such that a portion of the bottom reader gap over the nonmagnetic metallic pedestal is raised relative to portions of the bottom reader gap not over the nonmagnetic metallic pedestal.