摘要:
The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably ruthenium, titanium and tin or antimony oxides. The coating uses water as a solvent that provides for a smoother surface than alcohol based solvents. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell and in particular a cell for the electrolysis of aqueous chlor-alkali solutions.
摘要:
The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably ruthenium, titanium and tin or antimony oxides. The coating uses water as a solvent that provides for a smoother surface than alcohol based solvents. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell and in particular a cell for the electrolysis of aqueous chlor-alkali solutions.
摘要:
The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably ruthenium, titanium and tin or antimony oxides. The coating uses water as a solvent that provides for a smoother surface than alcohol based solvents. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell and in particular a cell for the electrolysis of aqueous chlor-alkali solutions.
摘要:
The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably platinum group metal oxides with or without valve metal oxides, and containing a transition metal component such as palladium, rhodium or cobalt. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell for the electrolysis of a halogen-containing solution wherein the palladium component reduces the operating potential of the anode and eliminates the necessity of a “break-in” period to obtain the lowest anode potential.
摘要:
This invention is directed to a controlled low profile electrodeposited copper foil. In one embodiment this foil has a substantially uniform randomly oriented grain structure that is essentially columnar grain free and twin boundary free and has an average grain size of up to about 10 microns. In one embodiment this foil has an ultimate tensile strength measured at 23.degree. C. in the range of about 87,000 to about 120,000 psi and an elongation measured at 180.degree. C. of about 15% to about 28%. The invention is also directed to a process for making the foregoing foil, the process comprising: (A) flowing an electrolyte solution between an anode and a cathode and applying an effective amount of voltage across said anode and said cathode to deposit copper on said cathode; said electrolyte solution comprising copper ions, sulfate ions and at least one organic additive or derivative thereof, the chloride ion concentration of said solution being up to about 1 ppm; the current density being in the range of about 0.1 to about 5 A/cm.sup.2 ; and (B) removing copper foil from said cathode.
摘要:
Copper conductive foil for use in preparing printed circuit boards is electrodeposited from an electrolyte solution containing copper ions, sulphate ions, animal glue and thiourea. The thiourea operates to decrease the roughness of the foil, to enable operation at higher current densities and/or to modify the ductility characteristics of the foil.
摘要:
This invention relates to electrodeposited copper foil having an elongation measured at 180.degree. C. in excess of about 5.5%, an ultimate tensile strength measured at 23.degree. C. in excess of about 60,000 psi, and a matte-side R.sub.tm in the range of about 4.5 to about 18 .mu.m. This invention also relates to a process for making electrodeposited copper foil which comprises: preparing a copper deposition bath comprising water, copper ions and sulfate ions, said bath containing less than about 20 ppm chloride ions; and applying electric current to said bath to electrodeposit copper from said bath using a current density in the range of about 200 to about 3000 amps per square foot.
摘要:
Copper conductive foil for use in preparing printed circuit boards is electrodeposited from an electrolyte solution containing copper ions, sulphate ions and thiourea. The thiourea operates to decrease the roughness of the foil, to enable operation at higher current densities, and/or to modify the tensile strength and ductility characteristics of the foil. An IPC Class 2 foil is prepared without annealing.
摘要翻译:用于制备印刷电路板的铜导电箔从含有铜离子,硫酸根离子和硫脲的电解液中电沉积。 硫脲的作用是降低箔的粗糙度,使得能够以更高的电流密度操作,和/或改变箔的拉伸强度和延展性。 制备IPC Class 2箔不退火。
摘要:
This invention relates to electrodeposited copper foil having an elongation measured at 180.degree. C. in excess of about 5.5%, an ultimate tensile strength measured at 23.degree. C. in excess of about 60,000 psi, and a matte-side R.sub.tm in the range of about 4.5 to about 18 .mu.m. This invention also relates to a process for making electrodeposited copper foil which comprises: preparing a copper deposition bath comprising water, copper ions and sulfate ions, said bath containing less than about 20 ppm chloride ions; and applying electric current to said bath to electrodeposit copper from said bath using a current density in the range of about 200 to about 3000 amps per square foot.
摘要:
This invention relates to a method for increasing oxidation protection and decreasing the nonuniformities in an electrodeposited layer of a treated copper foil or treated copper-based alloy foil, comprising depositing a protective anti-oxidation coating onto at least one surface of said foil from a solution comprising arsenic. The invention also encompasses the copper foil or copper-based alloy foil coated to improve appearance and oxidation resistance of the foil.