摘要:
A method, system and computer program product for controlling a processing system are disclosed. Alarms and information regarding operating components within the processing system are collected by a knowledge base and are related to one another therein. Data in the knowledge base is then analyzed to determine a root cause for the alarms.
摘要:
A method, system and computer program product for controlling a processing system are disclosed. Alarms and information regarding operating components within the processing system are collected by a knowledge base and are related to one another therein. Data in the knowledge base is then analyzed to determine a root cause for the alarms.
摘要:
A MIM capacitor includes a bottom plate, a capacitor dielectric disposed over the bottom plate, and a top plate disposed over the capacitor dielectric. An etch stop material is disposed over the top plate, and the top plate has a width that is less than the width of the etch stop material width. The top plate edges may be pulled back during the removal of the resist used to pattern the top plate, by the addition of chemistries in the resist etch that are adapted to pull-back or undercut the top plate edges beneath the etch stop material.
摘要:
Methods of etching a dielectric layer and a cap layer over a conductor to expose the conductor are disclosed. In one embodiment, the methods include the use of a silicon dioxide (SiO2) etching chemistry including octafluorocyclobutane (C4F8) and a titanium nitride (TiN) etching chemistry including tetrafluoro methane (CF4). The methods prevent etch rate degradation and exhibit reduced electro-static discharge (ESD) defects.
摘要翻译:公开了在导体上蚀刻介电层和盖层以暴露导体的方法。 在一个实施方案中,所述方法包括使用包括八氟环丁烷(C 4 H 8 F 8)的二氧化硅(SiO 2)蚀刻化学品和 包括四氟甲烷(CF 4 SO 4)的氮化钛(TiN)蚀刻化学。 该方法防止蚀刻速率降低并且显示降低的静电放电(ESD)缺陷。
摘要:
A process for prohibiting amino group transport from the top surface of a layered semiconductor wafer to a photoresist layer introduces a thin film oxynitride over the silicon nitride layer using a high temperature step of nitrous oxide (N2O) plus oxygen (O2) at approximately 300° C. for about 50 to 120 seconds. By oxidizing the silicon nitride layer, the roughness resulting from the adverse affects of amino group transport eliminated. Moreover, this high temperature step, non-plasma process can be used with the more advanced 193 nanometer technology, and is not limited to the 248 nanometer technology. A second method for exposing the silicon nitride layer to an oxidizing ambient, prior to the application of antireflective coating, introduces a mixture of N2H2 and oxygen (O2) ash at a temperature greater than or equal to 250° C. for approximately six minutes. This is followed by an O2 plasma clean and/or an Ozone clean, and then the subsequent layering of the ARC and photoresist.