摘要:
A device for percutaneously deploying a stented prosthetic heart valve includes a distal portion, a spacing collar, and an outer collar. The distal portion provides a coupling structure configured to selectively engage the stented prosthetic heart valve. The spacing collar is located proximal to the distal portion. The spacing collar is transitionable from a loaded state to an activated state. The spacing collar in the loaded state has a radial dimension less than the spacing collar in the activated state. The outer collar is configured to be movable relative to the distal portion and the spacing collar. The outer collar is slidably disposed over the spacing collar to provide the loaded state and is slidably retracted from the spacing collar when in the activated state.
摘要:
A device for percutaneously deploying a stented prosthetic heart valve includes a distal portion, a spacing collar, and an outer collar. The distal portion provides a coupling structure configured to selectively engage the stented prosthetic heart valve. The spacing collar is located proximal to the distal portion. The spacing collar is transitionable from a loaded state to an activated state. The spacing collar in the loaded state has a radial dimension less than the spacing collar in the activated state. The outer collar is configured to be movable relative to the distal portion and the spacing collar. The outer collar is slidably disposed over the spacing collar to provide the loaded state and is slidably retracted from the spacing collar when in the activated state.
摘要:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
摘要:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
摘要:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
摘要:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
摘要:
A device for percutaneously delivering a stented prosthetic heart valve. The device includes an inner shaft, a delivery sheath, stability tube, and a handle. The delivery sheath is slidably disposed over the inner shaft, and includes a capsule compressively containing the prosthesis over the inner shaft. The stability tube is coaxially received over the delivery sheath, and includes a distal region. A circumferential rigidity of the capsule is greater than a circumferential rigidity of the distal region. In transitioning from a delivery state to a deployed state, the capsule is withdrawn from the prosthetic heart valve and at least partially into the distal region to permit the prosthesis to self-deploy. The capsule forces the distal region to stretch and expand in diameter.
摘要:
A device for percutaneously delivering a stented prosthetic heart valve. The device includes an inner shaft, a delivery sheath, stability tube, and a handle. The delivery sheath is slidably disposed over the inner shaft, and includes a capsule compressively containing the prosthesis over the inner shaft. The stability tube is coaxially received over the delivery sheath, and includes a distal region. A circumferential rigidity of the capsule is greater than a circumferential rigidity of the distal region. In transitioning from a delivery state to a deployed state, the capsule is withdrawn from the prosthetic heart valve and at least partially into the distal region to permit the prosthesis to self-deploy. The capsule forces the distal region to stretch and expand in diameter.
摘要:
A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
摘要:
A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.