Abstract:
A linac system having at least two linac structures configured to operate with a resonant coupler. The linac structures and the resonant coupler resonate at the same frequency, are in close proximity, and designed for a relative phase of 0° or 180°. The coupling between the resonant coupler and the linac structures is achieved by slots between the linac structures and the resonant coupler, which allow the magnetic fields of the linac structures to interact with the magnetic field of the resonant coupler. The relative size of the slots determines the relative amplitude of the fields in the linac structures. There are three modes of oscillation, a 0 mode, wherein the linac structures and the resonant coupler are excited in phase, a π/2 mode, wherein the linac structures are excited out of phase and the resonant coupler is nominally unexcited, and the π mode, wherein the linac structures and the resonator coupler are excited out of phase.
Abstract:
A source wire is in the path of a neutral particle beam formed from positively and negatively charged particles (ions) and neutral particles (atoms). The source wire strips electrons from the negatively charged particles to neutralize these particles and strips electrons from the neutral particles to create positively charged particles. A magnetic field is perpendicular to the path of the particle movement. A detector wire downstream from the source wire detects the total particle flux. A magnetic field is perpendicular to the path of the particle movement. A variation, preferably cyclical, may be provided in at least one of (a) the characteristics of the magnetic field and (b) the positioning of the detector wire relative to the source wire in a direction perpendicular to the magnetic field and the particle movement. The resultant signal produced on the detector wire by the combined action of such magnetic field and/or detector wire movement is processed to indicate the characteristics, including direction, divergence and scattering of the neutral particle beam in a first direction. Second source and detector wires disposed in a direction respectively perpendicular to the first source and detector wires may be subjected to a second magnetic field perpendicular to the first magnetic field and to the particle path to determine the characteristics, including direction and divergence and scattering of the neutral particle beam in a second direction perpendicular to the first direction. A grid of source and detector wires may also be disposed in the first and second directions to enhance the indications of the characteristics, including direction, divergence and scattering, of the neutral particle beam in the first and second directions.
Abstract:
A new RFQ linac structure extends the useful range of beam velocity by a factor of 2 to 4 and beam energy by a factor of 4 to 16. Four-finger electrodes extend into each accelerating cell and provide quadrupole focusing of beam particles along a beam axis. The finger electrodes of adjacent cells also provide quadrupole acceleration of the beam particles along the beam axis. The finger of adjacent cells are oriented in accordance with a prescribed pattern. The pattern orientation of the fingers provides an additional degree of freedom that allows the periodcity of the focal structure to be independent of the periodicity of the accelerating structure. This makes it possible to double the rf frequency periodically to enhance the acceleration rate while holding the focusing strength constant.
Abstract:
A target system for producing intense epithermal and sub-MeV neutron fluxes from proton beams by the Li-7(p,n)Be-9 nuclear reaction by use of a layer of solid metallic lithium as the target material, which, in concert with a novel conical substrate to provide support and cooling, is designed to accept proton-beam power densities in excess of 1 MW m−2. The lithium is of limited thickness so that protons exit the lithium layer after reaching the threshold of the (p,n) reaction and deposit their remaining kinetic energy in the cooled substrate. In addition, the target system is configured in a novel geometry intended to confer symmetry around the beam axis of the resulting neutron fields—a feature particularly relevant to utilization of the claimed invention in boron-neutron capture therapy (BNCT).
Abstract:
A drift tube linac incorporates rf-electric quadrupole focusing by employing drift tubes with only one drift-tube stem per particle wavelength and in which the lowest frequency RF cavity mode has a transverse magnetic field (TM.sub.010 -mode). Each drift tube comprises two separate electrodes that form a capacitor that couples to the axial electric field of the primary cavity mode. The electrodes operate at different electrical potentials, as determined by the RF fields in the cavity, and are supported by a single stem along the axis of a cylindrical cavity. Each electrode supports two fingers pointing towards the opposite end of the drift tube, forming a four fingered geometry that produces an RF quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to the particle wavelength (.beta..lambda.) where .beta. is the particle velocity in units of the velocity of light and .lambda. is the free space wavelength of the rf. The particles traverse two distinct regions, namely the gaps between drift tubes, where the acceleration takes place, and the regions inside the drift tubes, where the RF focusing takes place. The linac of the present invention transforms the reverse fields into transverse fields for focusing such that the beam is not decelerated.
Abstract:
A radio frequency quadrupole (RFQ), which is a combination of the standard 4-vane and 4-rod designs, with a window or windows cut through mid-portions of the normally solid vanes. The windows decrease the resonant frequency, minimize undesirable mode coupling in the RFQ and result in a smaller and more easily tuned accelerator.
Abstract:
A close-coupled rf power system provides high peak rf power for a linear accelerator, or "linac", and other charged particle systems. The linac operates in a vacuum housing. Low level rf power is coupled inside of the vacuum housing by a conventional rf feedthrough connector. An input resonator cavity mounts on the side of the linac within the vacuum housing. The resonator cavity couples rf power to one or more amplifier assemblies, each including at least one planar triode mounted directly on the linac housing, proximate one end of the resonator cavity. The planar triode, in turn, generates a high power rf current at its respective anode. The high power rf current couples to the linac through a conductive loop operating at the anode potential. Anode cooling is provided by pumping a suitable fluid, such as de-ionized water, through the conductive loop. The high power rf current in the loop generates magnetic fields in the linac required for its operation. After passing through the loop, the rf current is shunted to ground through an integral rf-bypass capacitor. Many components of conventional rf power systems, such as rf output resonators, transmission lines, and vacuum windows, are not needed. Peak rf power of up to 1 megawatt is achievable by using clusters of planar triodes in each amplifier assembly, and by using multiple amplifier assemblies.
Abstract:
A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.
Abstract:
A heavy particle linear accelerator employing rf fields for transverse andongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.
Abstract:
A beam emittance measuring apparatus suitable for use with small diameter beams of the type commonly found in accelerators and beam transport systems. The apparatus includes a U-shaped frame that supports four thin wires that traverse the particle beam to create and detect thin particle shadows in the particle distribution. Two of the wires are shadow wires and are supported on one side of the U-shaped frame. Two of the wires are detection wires and are supported on the other side of the U-shaped frame, downstream from the shadow wires. One shadow wire and its corresponding detection wire are positioned to detect emittance data at a given point in a first emittance plane. The other shadow wire and its corresponding detection wire are positioned to detect emittance data at a given point in a second emittance plane. A given shadow wire and its corresponding detection wire are generally at right angles to each other so that the point of insertion defines the point at which the emittance measurement is made, much as the cross-hairs on a sighting device define a point being sighted. The location of the particle shadow on the detection wire provides a measure of the emittance angle of the particular beam particle whose shadow is cast by the shadow wire. The location of the particle shadow on the detection wire is detected optically using a concave mirror mounted in one side of the U-shaped frame that collects the image of the detection wire and focuses it on a segmented detector mounted in the other side of the U-shaped frame.