Nanostructured layer and fabrication methods
    1.
    发明授权
    Nanostructured layer and fabrication methods 失效
    纳米结构层和制造方法

    公开(公告)号:US07645934B1

    公开(公告)日:2010-01-12

    申请号:US10427749

    申请日:2003-04-29

    IPC分类号: H01L31/00 B29C65/00 B32B3/26

    摘要: Nanostructured layers with 10 nm to 50 nm pores spaced 10-50 nm apart, a method for making such nanostructured layers, optoelectronic devices having such nanostructured layers and uses for such nanostructured layers are disclosed. The nanostructured layer can be formed using precursor sol, which generally includes one or more covalent metal complexes, one or more surfactants, a solvent, one or more optional condensation inhibitors, and (optionally) water. Evaporating the solvent from the precursor sol forms a surfactant-templated film. Covalently crosslinking the surfactant-templated film forms a nanostructured porous layer. Pore size is controlled, e.g., by appropriate solvent concentration, choice of surfactant, use of chelating agents, use of swelling agents or combinations of these.

    摘要翻译: 公开了具有间隔10-50nm的10nm至50nm孔的纳米结构层,制造这种纳米结构层的方法,具有这种纳米结构层的光电子器件以及用于这种纳米结构层的纳米结构层。 纳米结构层可以使用通常包括一种或多种共价金属络合物,一种或多种表面活性剂,溶剂,一种或多种任选的缩合抑制剂和(任选的)水的前体溶胶形成。 从前体溶胶蒸发溶剂形成表面活性剂模板的膜。 共价交联表面活性剂模板的膜形成纳米结构多孔层。 例如通过适当的溶剂浓度,选择表面活性剂,使用螯合剂,使用溶胀剂或这些的组合来控制孔径。

    Solution-based fabrication of photovoltaic cell
    3.
    发明授权
    Solution-based fabrication of photovoltaic cell 失效
    光伏电池基于解决方案的制造

    公开(公告)号:US07663057B2

    公开(公告)日:2010-02-16

    申请号:US10782017

    申请日:2004-02-19

    摘要: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.

    摘要翻译: 公开了一种用于形成CIGS光伏电池有源层的墨水以及用于制造墨水的方法,制备活性层的方法和由活性层制成的太阳能电池。 油墨含有IB,IIIA和(任选地)VIA组分的纳米颗粒的混合物。 颗粒的直径在约1nm至约500nm之间的所需粒度范围,其中大部分颗粒的质量包括尺寸不超过平均粒度的约40%或以下的颗粒,或 如果平均粒度小于约5纳米,高于或低于平均粒度的不超过约2纳米。 使用这种墨水避免了在构建光伏电池期间将材料暴露于H 2 Se气体的需要,并且允许在膜退火期间更均匀的熔融,更均匀的纳米颗粒的混合,并且允许形成更高质量的吸收膜。

    Nanostructured layer and fabrication methods
    5.
    发明授权
    Nanostructured layer and fabrication methods 失效
    纳米结构层和制造方法

    公开(公告)号:US08257788B2

    公开(公告)日:2012-09-04

    申请号:US12643565

    申请日:2009-12-21

    IPC分类号: B05D5/00

    摘要: Nanostructured layers with 10 nm to 50 nm pores spaced 10-50 nm apart, a method for making such nanostructured layers, optoelectronic devices having such nanostructured layers and uses for such nanostructured layers are disclosed. The nanostructured layer can be formed using precursor sol, which generally includes one or more covalent metal complexes, one or more surfactants, a solvent, one or more optional condensation inhibitors, and (optionally) water. Evaporating the solvent from the precursor sol forms a surfactant-templated film. Covalently crosslinking the surfactant-templated film forms a nanostructured porous layer. Pore size is controlled, e.g., by appropriate solvent concentration, choice of surfactant, use of chelating agents, use of swelling agents or combinations of these.

    摘要翻译: 公开了具有间隔10-50nm的10nm至50nm孔的纳米结构层,制造这种纳米结构层的方法,具有这种纳米结构层的光电子器件以及用于这种纳米结构层的纳米结构层。 纳米结构层可以使用通常包括一种或多种共价金属络合物,一种或多种表面活性剂,溶剂,一种或多种任选的缩合抑制剂和(任选的)水的前体溶胶形成。 从前体溶胶蒸发溶剂形成表面活性剂模板的膜。 共价交联表面活性剂模板的膜形成纳米结构多孔层。 例如通过适当的溶剂浓度,选择表面活性剂,使用螯合剂,使用溶胀剂或这些的组合来控制孔径。

    Nanostructured Layer and Fabrication Methods
    6.
    发明申请
    Nanostructured Layer and Fabrication Methods 失效
    纳米结构层和制备方法

    公开(公告)号:US20100166954A1

    公开(公告)日:2010-07-01

    申请号:US12643565

    申请日:2009-12-21

    IPC分类号: B05D5/00

    摘要: Nanostructured layers with 10 nm to 50 nm pores spaced 10-50 nm apart, a method for making such nanostructured layers, optoelectronic devices having such nanostructured layers and uses for such nanostructured layers are disclosed. The nanostructured layer can be formed using precursor sol, which generally includes one or more covalent metal complexes, one or more surfactants, a solvent, one or more optional condensation inhibitors, and (optionally) water. Evaporating the solvent from the precursor sol forms a surfactant-templated film. Covalently crosslinking the surfactant-templated film forms a nanostructured porous layer. Pore size is controlled, e.g., by appropriate solvent concentration, choice of surfactant, use of chelating agents, use of swelling agents or combinations of these.

    摘要翻译: 公开了具有间隔10-50nm的10nm至50nm孔的纳米结构层,制造这种纳米结构层的方法,具有这种纳米结构层的光电子器件以及用于这种纳米结构层的纳米结构层。 纳米结构层可以使用通常包括一种或多种共价金属络合物,一种或多种表面活性剂,溶剂,一种或多种任选的缩合抑制剂和(任选的)水的前体溶胶形成。 从前体溶胶蒸发溶剂形成表面活性剂模板的膜。 共价交联表面活性剂模板的膜形成纳米结构多孔层。 例如通过适当的溶剂浓度,选择表面活性剂,使用螯合剂,使用溶胀剂或这些的组合来控制孔径。

    Molding technique for fabrication of optoelectronic devices
    7.
    发明授权
    Molding technique for fabrication of optoelectronic devices 有权
    用于制造光电器件的成型技术

    公开(公告)号:US07253017B1

    公开(公告)日:2007-08-07

    申请号:US10303665

    申请日:2002-11-22

    IPC分类号: H01L21/00

    摘要: Charge splitting networks for optoelectronic devices may be fabricated using a nanostructured porous film, e.g., of SiO2, as a template. The porous film may be fabricated using surfactant temptation techniques. Any of a variety of semiconducting materials including semiconducting metals and metal oxides (such as TiO2, CdSe, CdS, CdTe, or CuO) may be deposited into the pores of the porous template film. After deposition, the template film may be removed by controlled exposure to acid or base without disrupting the semiconducting material leaving behind a nanoscale network grid. Spaces in the network grid can then be filled with complementary semiconducting material, e.g., a semiconducting polymer or dye to create a exciton-splitting and charge transporting network with superior optoelectronic properties for an optoelectronic devices, particularly photovoltaic devices.

    摘要翻译: 用于光电子器件的电荷分束网络可以使用纳米结构多孔膜(例如SiO 2)作为模板来制造。 多孔膜可以使用表面活性剂诱导技术制造。 包括半导体金属和金属氧化物(例如TiO 2,CdSe,CdS,CdTe或C​​uO)的各种半导体材料中的任何一种可以沉积到多孔模板膜的孔中。 沉积后,可以通过控制暴露于酸或碱而不破坏半导体材料留下纳米尺度网格来除去模板膜。 然后可以用互补半导体材料(例如半导体聚合物或染料)填充网格中的空间,以产生具有用于光电子器件,特别是光伏器件的优异光电子性质的激子分裂和电荷传输网络。

    Interfacial architecture for nanostructured optoelectronic devices
    8.
    发明授权
    Interfacial architecture for nanostructured optoelectronic devices 失效
    纳米结构光电子器件的界面结构

    公开(公告)号:US08178384B1

    公开(公告)日:2012-05-15

    申请号:US12401238

    申请日:2009-03-10

    IPC分类号: H01L21/00

    摘要: An optoelectronic apparatus, a method for making the apparatus, and the use of the apparatus in an optoelectronic device are disclosed. The apparatus may include an active layer having a nanostructured network layer with a network of regularly spaced structures with spaces between neighboring structures. One or more network-filling materials are disposed in the spaces. At least one of the network-filling materials has complementary charge transfer properties with respect to the nanostructured network layer. An interfacial layer, configured to enhance an efficiency of the active layer, is disposed between the nanostructured network layer and the network-filling materials. The interfacial layer may be configured to provide (a) charge transfer between the two materials that exhibits different rates for forward versus backward transport; (b) differential light absorption to extend a range of wavelengths that the active layer can absorb; or (c) enhanced light absorption, which may be coupled with charge injection.

    摘要翻译: 公开了一种光电子装置,制造该装置的方法和该装置在光电装置中的应用。 该装置可以包括具有纳米结构网络层的有源层,其具有在相邻结构之间具有间隔的规则间隔结构的网络。 一个或多个网络填充材料设置在空间中。 至少一种网络填充材料相对于纳米结构化网络层具有互补电荷转移性质。 被配置为提高有源层的效率的界面层设置在纳米结构网络层和网络填充材料之间。 界面层可以被配置为提供(a)两种材料之间的电荷转移,这些材料对于正向和反向传输具有不同的速率; (b)差分光吸收以延长有源层可以吸收的波长范围; 或(c)增强的光吸收,其可与电荷注入相结合。

    Inter facial architecture for nanostructured optoelectronic devices
    9.
    发明授权
    Inter facial architecture for nanostructured optoelectronic devices 失效
    纳米结构光电子器件的面部构造

    公开(公告)号:US07511217B1

    公开(公告)日:2009-03-31

    申请号:US10419708

    申请日:2003-04-19

    IPC分类号: H01L31/00

    摘要: An optoelectronic apparatus, a method for making the apparatus, and the use of the apparatus in an optoelectronic device are disclosed. The apparatus may include an active layer having a nanostructured network layer with a network of regularly spaced structures with spaces between neighboring structures. One or more network-filling materials are disposed in the spaces. At least one of the network-filling materials has complementary charge transfer properties with respect to the nanostructured network layer. An interfacial layer, configured to enhance an efficiency of the active layer, is disposed between the nanostructured network layer and the network-filling materials. The interfacial layer may be configured to provide (a) charge transfer between the two materials that exhibits different rates for forward versus backward transport; (b) differential light absorption to extend a range of wavelengths that the active layer can absorb; or (c) enhanced light absorption, which may be coupled with charge injection.

    摘要翻译: 公开了一种光电子装置,制造该装置的方法和该装置在光电装置中的应用。 该装置可以包括具有纳米结构网络层的有源层,其具有在相邻结构之间具有间隔的规则间隔结构的网络。 一个或多个网络填充材料设置在空间中。 至少一种网络填充材料相对于纳米结构化网络层具有互补电荷转移性质。 被配置为提高有源层的效率的界面层设置在纳米结构网络层和网络填充材料之间。 界面层可以被配置为提供(a)两种材料之间的电荷转移,这些材料对于正向和反向传输具有不同的速率; (b)差分光吸收以延长有源层可以吸收的波长范围; 或(c)增强的光吸收,其可与电荷注入相结合。