摘要:
An active rectifier and a wireless power receiver including the active rectifier are provided. According to an aspect, an active rectifier may include: a first loop configured to provide voltage when the phase of an input signal is positive; and a second loop configured to provide voltage when the phase of the input signal is negative, wherein the first loop and the second loop include a delay locked loop configured to compensate for reverse current leakage due to a delay of a switch included therein.
摘要:
An active rectifier and a wireless power receiver including the active rectifier are provided. According to an aspect, an active rectifier may include: a first loop configured to provide voltage when the phase of an input signal is positive; and a second loop configured to provide voltage when the phase of the input signal is negative, wherein the first loop and the second loop include a delay locked loop configured to compensate for reverse current leakage due to a delay of a switch included therein.
摘要:
There is provided a power factor correction circuit capable of correcting a power factor of a power converting module through increasing an input current by switching a main switching element of a power converting module on the basis of a first reference wave having a slope based on a first signal and an error voltage, in particular, by limiting a switching frequency on the basis of a first reference wave having a slope based on a second signal lower than a first signal and an error voltage when the switching frequency of the main switching element increases because an input voltage of the power converting module is low.
摘要:
A data alignment circuit of a semiconductor memory apparatus includes: a data strobe clock phase control block configured to control a phase of a data strobe clock signal in response to a strobe delay code and generate a delayed strobe clock signal; a plurality of data phase control blocks configured to control phases of input data in response to data delay codes and generate delayed data; a plurality of data alignment blocks configured to latch the delayed data in response to the delayed strobe clock signal and generate latched data and aligned data; and a delay code generation block configured to perform an operation of determining phases of the latched data and generate the strobe delay code and the data delay codes.
摘要:
A data equalizing circuit includes an equalizer configured to output data according to a control code; and a detection unit configured to divide the data into N number of calculation periods, count data transition frequencies for the N calculation periods, calculate dispersion values of the data transition frequencies for the N calculation periods, and output the control code corresponding to a largest dispersion value, in response to a counting interruption signal and a counting completion signal, wherein n is equal to or greater than 2, N is greater than n, and the data is divided to n number of unit intervals (UI), andwherein a phase shift of each of the calculation periods with respect to its corresponding UI is different from a phase shift of any of the other calculation periods with respect to its corresponding UI.
摘要:
A memory device is adapted for prefetching data. The memory device has a memory cell array, with local sense amplifiers for receiving data bits prefetched from the memory cell array. The memory device also includes a serializer, and data paths that connect the local sense amplifiers to the serializer. Crossover connections are interposed between stages of the data paths. These transfer data bits between the data paths. Preferably they do that as part of being gates between the stages, which are in turn controlled by a clock. This way ordering is distributed within the data paths, and thus does not limit how fast the clock may become. In addition, the space used remains at a fundamental minimum.
摘要:
A data equalizing circuit includes an equalizer configured to control a gain of data according to a value of a control code and output a controller gain; and a detection unit configured to divide n cycles of the data into N periods, count data transition frequencies for n/N periods while changing the value of the control code, calculate dispersion values of data transition frequencies for 1/N periods of the data from the data transition frequencies for the n/N periods, and finally output the value of the control code corresponding to a largest dispersion value, wherein n is equal to or greater than 2 and is set such that boundaries of the respective n/N periods of the data have different positions in the 1 UI data.