Abstract:
An interchangeable switching module is for an electrical switching apparatus including a first enclosure, separable contacts and an operating mechanism structured to open and close the separable contacts. The interchangeable switching module includes a second enclosure structured to fit within the first enclosure of the electrical switching apparatus; and an interchangeable electrical circuit and/or mechanical mechanism within the second enclosure and being structured to cooperate with switching of the separable contacts.
Abstract:
A current sensing assembly includes a conductor having a first side, a second side opposite the first side, a third side, and a fourth side opposite the third side. The first side has a first notch formed therein and the second side has a second notch formed therein opposite the first notch. The current sensing assembly also includes a sensor assembly including a first magnetic sensor disposed in the first notch or proximate to the third side of the conductor between the first and second notches, and a second magnetic sensor disposed in the second notch or proximate to the fourth side of the conductor between the first and second notches.
Abstract:
An electrical connection element is for a power connector. The power connector includes an electrical component having a number of first electrical mating members. The electrical connection element comprises: a housing including a number of second electrical mating members structured to be electrically connected to the number of first electrical mating members; a contact assembly enclosed by the housing and being electrically connected to the number of second electrical mating members; and an operating mechanism for opening and closing the contact assembly. The contact assembly is structured to electrically connect and disconnect power while the number of first electrical mating members remain mechanically coupled to the number of second electrical mating members.
Abstract:
A voltage sensor system for sensing voltage in a conductor, the voltage sensor system including a first plate, a first electrode disposed a first distance away from the first plate, a second plate, a second electrode disposed a second distance away from the second plate, a control unit structured to control one of the first plate and the second plate to be grounded and the other of the first plate and the second plate to be electrically floating, and a differential amplifier electrically connected to the first electrode and the second electrode and being structured to output an output voltage that is proportional to a difference in voltage between the first electrode and the second electrode.
Abstract:
A voltage sensor housing includes a top portion including a conductive top portion composed of conductive material and non-conductive top portions composed of non-conductive material, a bottom portion composed of non-conductive material, side portions composed of non-conductive material, wherein the top portion the bottom portion and the side portions define an interior area structured to hold a voltage sensor, and conductive side portions composed of conductive material and being disposed adjacent to the side portions. The conductive top portion is electrically floating and the conductive side portions are electrically grounded.
Abstract:
An electrical connection element is for a power connector. The power connector has an electrical component having a number of first electrical mating members. The electrical connection element includes a housing having a number of second electrical mating members structured to be electrically connected to the number of first electrical mating members, a contact assembly structured to move between an OPEN position and a CLOSED position, the contact assembly including a number of sets of separable contacts each structured to be electrically connected to at least one of the number of second electrical mating members, and an arc suppression system for redirecting current away from at least one of the sets of separable contacts in order to suppress arcing.
Abstract:
An electrical switching apparatus for bi-directional direct current switching and interruption includes separable contacts, an operating mechanism to open and close the contacts, and an arc chute. The arc chute includes two ferromagnetic side members each having a first side and an opposite second side, the first side of a second ferromagnetic side member facing the first side of a first ferromagnetic side member, a first permanent magnet disposed on the first side of the first side member, a second permanent magnet disposed on the first side of the second side member, and a single set of a plurality of arc splitter plates disposed between the permanent magnets. The permanent magnets are substantially smaller in size than each of the side members. The arc chute is divided into two arc chambers each of which is for a corresponding direction of DC flow through the contacts.
Abstract:
A voltage sensor housing includes a top portion including a conductive top portion composed of conductive material and non-conductive top portions composed of non-conductive material, a bottom portion composed of non-conductive material, side portions composed of non-conductive material, wherein the top portion the bottom portion and the side portions define an interior area structured to hold a voltage sensor, and conductive side portions composed of conductive material and being disposed adjacent to the side portions. The conductive top portion is electrically floating and the conductive side portions are electrically grounded.
Abstract:
An electrical connection element is for a power connector. The power connector has an electrical component including a first insulative housing and a first mating assembly having a number of first electrical mating members structured to be substantially enclosed by the first insulative housing. The electrical connection element includes a second insulative housing; and a second mating assembly comprising a number of second electrical mating members structured to be electrically connected to the number of first electrical mating members. The second mating assembly is structured to move between a first position corresponding to the number of second electrical mating members being substantially enclosed by the second insulative housing, and a second position corresponding to the number of second electrical mating members being partially disposed external the second insulative housing.
Abstract:
A current sensing assembly includes a conductor, first and second magnetic sensors disposed proximate to opposite sides of the conductor and being structured to output first and second voltage signals, a current direction detector circuit structured to detect a direction of a current flowing through the conductor, a switching circuit having first and second outputs and being structured to switch between a first condition where the first voltage signal is output to the first output and the second voltage signal is output to the second output and a second condition where the first voltage signal is output to the second output and the second voltage signal is output to the first output based on the switching signal, and an output circuit including a differential amplifier structured to amplify a voltage difference between the first and second voltage signals and to output the amplified voltage difference.