Abstract:
A DC arc fault detection module includes a current detecting section having at least one output, wherein the current detecting section is structured to determine whether at least one signal based on a current measured from a DC supply line exceeds at least one corresponding predetermined threshold level and cause the at least one output to indicate that the threshold level has been exceeded. The module also includes a processing device structured to: (i) receive the at least one output, (ii) determine whether an arc fault in the DC electrical system has occurred based on at least the at least one output, (iii) determine an estimation of background noise based on at least one signal indicative of a current on the DC supply line, and (iv) adjust the at least one corresponding predetermined threshold level based on the estimation of background noise.
Abstract:
A wireless power system including a wireless power transmitter coupled to a power source and being structured to receive power from the power source, the wireless power transmitter including a transmitter coil structured to wirelessly transmit said power; and a wireless power receiver including a receiver coil structured to receive the power from the transmitter coil, the wireless power receiver being coupled to and load and structured to provide the power to the load, wherein the wireless power transmitter is structured to be installed in a junction box disposed in a floor, a wall, or a ceiling, or inside an exterior surface of equipment; and wherein the wireless power transmitter is structured to wirelessly transmit the power to the wireless power receiver disposed outside of the floor, the wall, or the ceiling.
Abstract:
A receptacle includes an outlet, an interruption mechanism structured to activate to de-energize the outlet, a temperature sensing circuit including a resistor and a thermistor arranged as a voltage divider, wherein the thermistor has a resistance proportional to temperature, a comparator circuit structured to compare an output of the temperature sensing circuit to a predetermined reference voltage and to selectively output a signal based on the comparison of the output of the temperature sensing circuit and the predetermined reference voltage. The interruption mechanism is structured to activate to de-energize the outlet in response to the comparator circuit outputting the signal.
Abstract:
An electrical device includes a first terminal structured to electrically connect to a power source; a second terminal structured to electrically connect to a load; a voltage sensor electrically connected to a point between the first and second terminals and being structured to sense a voltage at the point between the first and second terminals; a switch electrically connected between the first terminal and the second terminal; and a control unit structured to detect a power quality event in the power flowing between the first and second terminals based on the sensed voltage and to control a state of the switch based on the detected power quality event.
Abstract:
An arc fault detection system includes a high frequency detector module structured to detect first spectral content of power having a frequency in a first frequency range, a number of arc fault circuit interrupters each having separable contacts, a low frequency detector module structured to detect second spectral content of power having a frequency in a second frequency range, a control unit structured to control the separable contacts to trip open, and an arc fault detection unit structured to detect an arc fault based on the detected first and second spectral content of the power and to cause the control unit to control the separable contacts to trip open in response to detecting the arc fault. A communication bus provides communication between the high frequency detector and the arc fault circuit interrupters and the first frequency range includes frequencies that are higher than frequencies in the second frequency range.
Abstract:
A circuit interrupter includes separable contacts, a trip actuator structured to cause the separable contacts to trip open, a conductor structured to carry power through the circuit interrupter, a sensor having a forward bias voltage drop inversely proportional to temperature and being disposed proximate the conductor, an amplifier circuit electrically connected to the sensor and being structured to amplify the forward bias voltage drop of the sensor, and a comparator circuit structured to compare the amplified forward bias voltage drop with a predetermined reference voltage and to output a signal to the trip actuator when the amplified forward bias voltage drop is less than or equal to the predetermined reference voltage. The signal causes the trip actuator to cause the separable contacts to trip open.
Abstract:
An arc fault circuit interrupter detector circuit including a super regenerative high frequency receiver is described herein. In one exemplary, non-limiting embodiment, a current measure component determines that a current noise signal within a circuit breaker is occurring at a particular frequency of interest. The super regenerative high frequency receiver receives the current noise signal and, via an oscillator circuit, causes the signal to ramp to a quench voltage, dissipate, and repeat. A microcontroller in communication with the super regenerative high frequency receiver measures a time period of the oscillator circuit's oscillations, and determines an amplitude of the current noise signal based, at least in part, on the time period. If it is determined that the amplitude of the input current signal at the frequency of interest corresponds to an arc fault event, a trip signal is generated to trip the circuit, quenching the arc fault event.
Abstract:
A DC arc fault detection module includes an LF current section, an LF voltage section, and an HF current section having a plurality of outputs, each output being associated with a respective one of a plurality of frequency sub-bands. The HF current section is structured to, for each of the frequency sub-bands, (i) detect a rise in energy of the frequency sub-band above a first predetermined threshold level for at least a certain amount of time and (ii) cause the associated output to indicate a rise in energy detection in response to detecting the rise in energy above the associated threshold level for at least the associated certain amount of time. The module includes a processing device structured to determine whether a DC arc fault has occurred based on the outputs from the LF and HF current and LF voltage sections.
Abstract:
An AC arc fault detection module includes an LF current section, an LF voltage section, and an HF current section having a plurality of outputs, each output being associated with a respective one of a plurality of frequency sub-bands. The HF current section is structured to, for each of the frequency sub-bands, (i) detect a rise in energy of the frequency sub-band above a first predetermined threshold level for at least a certain amount of time and (ii) cause the associated output to indicate a rise in energy detection in response to detecting the rise in energy above the associated threshold level for at least the associated certain amount of time. The module includes a processing device structured to determine whether an AC arc fault has occurred based on the outputs from the LF and HF current and LF voltage sections.
Abstract:
An AC arc fault detection module includes a current detecting section having at least one output and being structured to determine whether at least one signal based on a current measured from an AC phase line exceeds at least one corresponding predetermined threshold level and cause the at least one output to indicate that the threshold has been exceeded. The module also includes a processing device structured to: (i) receive the at least one output, (ii) determine whether an arc fault in the AC electrical system has occurred based on at least the at least one output, (iii) determine an estimation of background noise based on at least one signal indicative of a current on the AC phase line, and (iv) adjust the at least one corresponding predetermined threshold level based on the estimation of background noise.