Abstract:
A wireless power system including a wireless power transmitter coupled to a power source and being structured to receive power from the power source, the wireless power transmitter including a transmitter coil structured to wirelessly transmit said power; and a wireless power receiver including a receiver coil structured to receive the power from the transmitter coil, the wireless power receiver being coupled to and load and structured to provide the power to the load, wherein the wireless power transmitter is structured to be installed in a junction box disposed in a floor, a wall, or a ceiling, or inside an exterior surface of equipment; and wherein the wireless power transmitter is structured to wirelessly transmit the power to the wireless power receiver disposed outside of the floor, the wall, or the ceiling.
Abstract:
A system for different electric loads includes sensors structured to sense voltage and current signals for each of the different electric loads; a hierarchical load feature database having a plurality of layers, with one of the layers including a plurality of different load categories; and a processor. The processor acquires voltage and current waveforms from the sensors for a corresponding one of the different electric loads; maps a voltage-current trajectory to a grid including a plurality of cells, each of which is assigned a binary value of zero or one; extracts a plurality of different features from the mapped grid of cells as a graphical signature of the corresponding one of the different electric loads; derives a category of the corresponding one of the different electric loads from the database; and identifies one of a plurality of different electric load types for the corresponding one of the different electric loads.
Abstract:
A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.
Abstract:
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the power or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.
Abstract:
A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.
Abstract:
A system characterizes and identifies one of a plurality of different operating modes of a number of electric loads. The system includes a processor; a voltage sensor providing a voltage signal for one of the electric loads to the processor; a current sensor providing a current signal for the one electric load to the processor; and a routine executed by the processor and structured to characterize the different operating modes using steady state and voltage-current trajectory features determined from the voltage and current signals, and to identify a particular one of the different operating modes based on a plurality of operating mode membership functions of the steady state and voltage-current trajectory features.
Abstract:
A system disaggregates and estimates power consumption of electric loads powered by a single electrical outlet. The system includes a processor having a routine; a current sensor cooperating with the processor to measure samples for one line cycle of an aggregated current waveform for the electric loads powered by the single electrical outlet; and a voltage sensor cooperating with the processor to measure samples for the one line cycle of a voltage waveform for the electric loads powered by the single electrical outlet. The processor routine transfers the measured samples for the one line cycle of the aggregated current waveform and the voltage waveform into an aggregated voltage-current trajectory for the single electrical outlet, and provides an instantaneous decomposition of power consumption for a plurality of different categories of the electric loads from the aggregated voltage-current trajectory for the one line cycle.