Abstract:
An operation method of a first apparatus for supporting disaster communications includes obtaining map information of a disaster area from a server; obtaining information on a location of the first apparatus, and obtaining environmental condition information of the first apparatus indicating a risk of an area to which the first apparatus belongs; obtaining information on a location and environmental condition information of a second apparatus located in the disaster area from the second apparatus; determining a disaster risk level indicating a risk level for each location in the disaster area based on the location and environmental condition information of the first apparatus and the location and environmental condition information of the second apparatus; and updating the map information by reflecting the disaster risk level.
Abstract:
A logistics information processing server includes a data processor configured to receive environment sensing data collected from at least one environmental sensor disposed in a cargo storage device in which at least one cargo is stored and cargo related information collected from a cargo tag attached to the at least one cargo, and to perform processing by classifying the environment sensing data and the cargo related data into cargo storage environment data, cargo information, and transportation environment information according to data attributes; and a logistics trust index generator configured to generate a logistics trust index indicating a degree of influence exerted on the quality of the cargo from the cargo storage environment data, cargo information, and transportation environment information output by the data processor.
Abstract:
Provided is an apparatus and method for detecting a traffic flooding attack and conducting an in-depth analysis using data mining that may rapidly detect a distributed denial of service (DDoS) attack, for example, a traffic flooding attack, developed more variously and firmly from a denial of service (DoS) attack, perform an attack type classification, and conduct a semantic analysis with respect to the attack. The apparatus and method may support a system operation and provide a more stable service, by rapidly detecting a traffic flooding attack, classifying a type of the attack, and conducting a semantic analysis based on a prediction and analysis scheme of data mining.
Abstract:
A hybrid self-generation apparatus includes a vibration source based generation part installed in a mechanical apparatus and converting vibration energy generated during operation or movement of the mechanical apparatus into first electric energy; a wind power source based generation part installed in the mechanical apparatus and converting kinetic energy of air generated in periphery of the mechanical apparatus during operation or movement of the mechanical apparatus into second electric energy; and a power storage part storing the first electric energy and the second electric energy. Also, the wind power source based generation part includes at least one air controller, and the wind power source based generation part automatically operates or stops power generation according to a movement speed of the mechanical apparatus in accordance with operation of the at least one air controller.
Abstract:
A hybrid self-generation apparatus includes a vibration source based generation part installed in a mechanical apparatus and converting vibration energy generated during operation or movement of the mechanical apparatus into first electric energy; a wind power source based generation part installed in the mechanical apparatus and converting kinetic energy of air generated in periphery of the mechanical apparatus during operation or movement of the mechanical apparatus into second electric energy; and a power storage part storing the first electric energy and the second electric energy. Also, the wind power source based generation part includes at least one air controller, and the wind power source based generation part automatically operates or stops power generation according to a movement speed of the mechanical apparatus in accordance with operation of the at least one air controller.
Abstract:
A method for providing a traffic safety service of a traffic safety service server communicating with a client terminal includes: receiving sensor data of each sensor from the client terminal; classifying the sensor data into data according to at least one specific time slot for each sensor and calculating a safety score of each of the at least time slot; calculating an average of the safety scores of the at least time slot and calculating a safety score for each sensor, and calculating a safety index on the basis of the safety score for each sensor and a weight assigned to each sensor.
Abstract:
A mobile ad-hoc routing apparatus includes a first communication module and a second communication module configured to transmit and receive data through a first communication band and a second communication band, respectively, a memory configured to store a program for transmitting and receiving the data, and a processor configured to execute the program stored in the memory, wherein when the program is executed, the processor receives first control information broadcast by one or more neighboring nodes via the first communication module and stores the first control information in the memory, wherein the first control information includes current position and communication status information of the neighboring node, the processor updates information on the neighboring node on the basis of the first control information, generates packet forwarding information which includes information on a node which currently allows packet data to be transmitted based on the updated information on the neighboring node, and stores the generated packet forwarding information in the memory, and the processor determines a subsequent node which allows the packet data to be transmitted to a destination node on the basis of the packet forwarding information and transmits the packet data to the subsequent node via the second communication module.
Abstract:
An operation method of a first apparatus for supporting disaster communications includes obtaining map information of a disaster area from a server; obtaining information on a location of the first apparatus, and obtaining environmental condition information of the first apparatus indicating a risk of an area to which the first apparatus belongs; obtaining information on a location and environmental condition information of a second apparatus located in the disaster area from the second apparatus; determining a disaster risk level indicating a risk level for each location in the disaster area based on the location and environmental condition information of the first apparatus and the location and environmental condition information of the second apparatus; and updating the map information by reflecting the disaster risk level.