Abstract:
Differential uncloneable variability-based cryptography techniques are provided. The differential cryptography includes a hardware based public physically uncloneable function (PPUF) to perform the cryptography. The PPUF includes a first physically uncloneable function (PUF) and a second physically uncloneable function. An arbiter determines the output of the circuit using the outputs of the first and second PUFs. Cryptography can be performed by simulating the PPUF with selected input. The output of the simulation, along with timing information about a set of inputs from where the corresponding input is randomly selected for simulation, is used by the communicating party that has the integrated circuit with the PPUF to search for an input that produces the output. The input can be configured to be the secret key or a part of the secret key.
Abstract:
Examples include autonomously authenticating a financial transaction, on behalf of the user, without interacting with the user, via wireless communication link. In various embodiments, the user's cellular phone may be configured to process a message that provides at least partial service context and autonomously authenticate the financial transaction.
Abstract:
Techniques are generally described for determining locations of a plurality of communication devices in a network. In some examples, methods for creating a location discovery infrastructure (LDI) for estimating locations of one or more of a plurality of communication nodes may comprise one or more of determining a plurality of locations in the terrain to place a corresponding plurality of beacon nodes, determining a plurality of beacon node groups for the placed beacon nodes, and determining a schedule for the placed beacon nodes to be active. Additional variants and embodiments are also disclosed.
Abstract:
A sematic medical technology is disclosed. In various embodiments, the technology organizes an initial data collection to collect data from the one or more sensors; processes the data to obtain an initial diagnosis wherein the initial diagnosis can be a syntax diagnosis or a semantic diagnosis; identifies an organization for a n additional data collection to collect additional data; analyzes the additional data to obtain a refined diagnosis; and repeats the identifying and analyzing until a stopping criterion is satisfied.
Abstract:
Examples include autonomously authenticating a financial transaction, on behalf of the user, without interacting with the user, via wireless communication link. In various embodiments, the user's cellular phone may be configured to process a message that provides at least partial service context and autonomously authenticate the financial transaction.
Abstract:
Techniques for user profile-based system level management (SLM) and creation of system level agreements of a wireless device are generally disclosed. In some examples, a predictor may be provided to predict a future task to be performed by a wireless device, including resource requirements, based at least in part on a profile of a user and at least one of a profile of a communication partner of the user, an operational recommendation, a performance model or a current state. An optimizer/analyzer may be provided to generate a plurality of instructions to configure the wireless device, based at least in part on the predicted future task and resource requirement, and a quality of service requirement of the wireless device, in anticipation of having to perform the predicted task. In various examples, the predictor and the optimizer/analyzer may form a local or a remotely disposed system level manager.
Abstract:
A technique of reducing leakage energy associated with a post-silicon target circuit is generally described herein. One example method includes purposefully aging a plurality of gates in the target circuit based on a targeted metric including a timing constraint associated with the target circuit.
Abstract:
Techniques described herein generally include methods and systems related to the use of processors that include graphene-containing computing elements while minimizing or otherwise reducing the effects of high leakage energy associated with graphene computing elements. Furthermore, embodiments of the present disclosure provide systems and methods for scheduling instructions for processing by a chip multiprocessor that includes graphene-containing computing elements arranged in multiple processor groups.
Abstract:
Techniques for user profile-based system level management (SLM) and creation of system level agreements of a wireless device are generally disclosed. In some examples, a predictor may be provided to predict a future task to be performed by a wireless device, including resource requirements, based at least in part on a profile of a user and at least one of a profile of a communication partner the user, an operational recommendation, a performance model or a current state. An optimizer/analyzer may be provided to generate a plurality of instructions to configure the wireless device, based at least in part on the predicted future task and resource requirement, and a quality of service requirement of the wireless device, in anticipation of having to perform the predicted task. In various examples, the predictor and the optimizer/analyzer may form a local or a remotely disposed system level manager.