Abstract:
A wireless power transfer circuit can include an input port that can be configured to couple to a power source, an ac excitation circuit having a port coupled to the input port, a resonant circuit coupled to the ac excitation circuit, and a controller circuit that can be configured to operate the ac excitation circuit. The wireless power transfer circuit can operate to inductively transfer power from the resonant circuit and the controller circuit can be configured to change an operating frequency of the ac excitation circuit and change a configuration of the resonant circuit responsive a change in indicated efficiency of the wireless power transfer.
Abstract:
An integrated circuit is provided with an MCU, which is configured to generate a PWM control signal that is free of switching pattern information therein. A current-estimating gate driver is provided, which is responsive to the PWM signal. This gate driver is configured to drive first and second gate terminals of first and second parallel switching devices (within a hybrid switch) with gate signals that establish a second switching pattern within the hybrid switch. These gate driving operations are performed in response to measuring a first voltage associated with a terminal of the hybrid switch when being driven by gate signals that establish a first switching pattern within the hybrid switch that is different from the second switching pattern. The duty cycles of the gate signals associated with the second switching pattern are unequal and the duty cycles of the gate signals associated with the first switching pattern are unequal.
Abstract:
An integrated circuit includes a hybrid switch having first and second switching devices of different type therein. A control circuit is provided, which is configured to drive the first and second devices with respective first and second control signals having first and second unequal duty cycles, respectively, when the first and second devices are supporting a forward current in a first current range. The control circuit is further configured to drive the first and second devices with respective third and fourth control signals having third and fourth unequal duty cycles, respectively, when the first and second devices are supporting a forward current in a second current range outside the first current range. The first duty cycle may be greater than the second duty cycle and the third duty cycle may be less than the fourth duty cycle.
Abstract:
A wireless power transfer circuit can include an input port that can be configured to couple to a power source, an ac excitation circuit having a port coupled to the input port, a resonant circuit coupled to the ac excitation circuit, and a controller circuit that can be configured to operate the ac excitation circuit. The wireless power transfer circuit can operate to inductively transfer power from the resonant circuit and the controller circuit can be configured to change an operating frequency of the ac excitation circuit and change a configuration of the resonant circuit responsive a change in indicated efficiency of the wireless power transfer.
Abstract:
Wireless power transfer systems include at least one foil-type transmitter/receiver coil with a plurality of turns, which is configured to reduce eddy current losses therein when energized to conduct an alternating current that supports inductive power transfer including coil-to-coil power electrical transfer, inductive heating, etc. The plurality of turns includes at least an outermost turn with a first arcuate-shaped corner having a concave inner surface, which faces an immediately adjacent one of the plurality of turns. The immediately adjacent one of the plurality of turns may also have a second arcuate-shaped corner with a concave inner surface facing an innermost one of the plurality of turns. The first arcuate-shaped corner may have a non-uniform radius of curvature and/or an innermost one of the plurality of turns may have an arcuate-shaped corner, which is a mirror image of the first arcuate-shaped corner when the coil is view in transverse cross-section.
Abstract:
An integrated circuit is provided with an MCU, which is configured to generate a PWM control signal that is free of switching pattern information therein. A current-estimating gate driver is provided, which is responsive to the PWM signal. This gate driver is configured to drive first and second gate terminals of first and second parallel switching devices (within a hybrid switch) with gate signals that establish a second switching pattern within the hybrid switch. These gate driving operations are performed in response to measuring a first voltage associated with a terminal of the hybrid switch when being driven by gate signals that establish a first switching pattern within the hybrid switch that is different from the second switching pattern. The duty cycles of the gate signals associated with the second switching pattern are unequal and the duty cycles of the gate signals associated with the first switching pattern are unequal.
Abstract:
An integrated circuit includes a hybrid switch having first and second switching devices of different type therein. A control circuit is provided, which is configured to drive the first and second devices with respective first and second control signals having first and second unequal duty cycles, respectively, when the first and second devices are supporting a forward current in a first current range. The control circuit is further configured to drive the first and second devices with respective third and fourth control signals having third and fourth unequal duty cycles, respectively, when the first and second devices are supporting a forward current in a second current range outside the first current range. The first duty cycle may be greater than the second duty cycle and the third duty cycle may be less than the fourth duty cycle.
Abstract:
An integrated circuit is provided with an MCU, which is configured to generate a PWM control signal that is free of switching pattern information therein. A current-estimating gate driver is provided, which is responsive to the PWM signal. This gate driver is configured to drive first and second gate terminals of first and second parallel switching devices (within a hybrid switch) with gate signals that establish a second switching pattern within the hybrid switch. These gate driving operations are performed in response to measuring a first voltage associated with a terminal of the hybrid switch when being driven by gate signals that establish a first switching pattern within the hybrid switch that is different from the second switching pattern. The duty cycles of the gate signals associated with the second switching pattern are unequal and the duty cycles of the gate signals associated with the first switching pattern are unequal.
Abstract:
Wireless power transfer systems include at least one foil-type transmitter/receiver coil with a plurality of turns, which is configured to reduce eddy current losses therein when energized to conduct an alternating current that supports inductive power transfer including coil-to-coil power electrical transfer, inductive heating, etc. The plurality of turns includes at least an outermost turn with a first arcuate-shaped corner having a concave inner surface, which faces an immediately adjacent one of the plurality of turns. The immediately adjacent one of the plurality of turns may also have a second arcuate-shaped corner with a concave inner surface facing an innermost one of the plurality of turns. The first arcuate-shaped corner may have a non-uniform radius of curvature and/or an innermost one of the plurality of turns may have an arcuate-shaped corner, which is a mirror image of the first arcuate-shaped corner when the coil is view in transverse cross-section.