Abstract:
Methods and systems for on-site generation of peracid chemistry, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions, are disclosed. In particular, an adjustable biocide formulator or generator system is designed for on-site generation of peroxycarboxylic acids and peroxycarboxylic acid forming compositions from sugar esters. Methods of using the in situ generated peroxycarboxylic acids and peroxycarboxylic acid forming compositions are also disclosed.
Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs and/or liquid outputs of a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser. The tool may include any number of flow meters, and may also include a flow meter connected to an outlet of a dispenser (22) for providing flow information.
Abstract:
Methods and systems for on-site generation of peracid chemistry, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions, are disclosed. In particular, an adjustable biocide formulator or generator system is designed for on-site generation of peroxycarboxylic acids and peroxycarboxylic acid forming compositions from sugar esters. Methods of using the in situ generated peroxycarboxylic acids and peroxycarboxylic acid forming compositions are also disclosed.
Abstract:
Methods and systems for on-site generation of peracid chemistry, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions, are disclosed. In particular, an adjustable biocide formulator or generator system is designed for on-site generation of peroxycarboxylic acids and peroxycarboxylic acid forming compositions from sugar esters. Methods of using the in situ generated peroxycarboxylic acids and peroxycarboxylic acid forming compositions are also disclosed.
Abstract:
A dispensing system and methods employed therein uses optical displacement sensing to control dispensation of one or more products. An optical displacement sensor measures displacement of a load beam supporting a vessel from which the product is to be dispensed. The displacement of the load beam is related to the amount (weight) of the product remaining in the vessel. The system may thus control dispensation of the product based on the optical displacement measurements.
Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs and/or liquid outputs of a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser. The tool may include any number of flow meters, and may also include a flow meter connected to an outlet of a dispenser (22) for providing flow information.
Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs and/or liquid outputs of a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser. The tool may include any number of flow meters, and may also include a flow meter connected to an outlet of a dispenser (22) for providing flow information.
Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs to a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser.
Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs to a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser.
Abstract:
Methods and systems for on-site generation of peracid chemistry, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions, are disclosed. In particular, an adjustable biocide formulator or generator system is designed for on-site generation of peroxycarboxylic acids and peroxycarboxylic acid forming compositions from sugar esters. Methods of using the in situ generated peroxycarboxylic acids and peroxycarboxylic acid forming compositions are also disclosed.