摘要:
A multiple location electronic timer system comprises an electronic timer and one or more accessory timers. The electronic timer is adapted to be coupled between an AC power source and an electrical load. The electronic timer is operable to enable the delivery of power to the load and to subsequently discontinue the delivery of power to the load automatically after a preset timeout period has elapsed. In response to controls signals received from the accessory timer, the electronic timer is operable to adjust the preset timeout period, enable the delivery of power to the load, discontinue the delivery of power to the load, and to enter a bypass mode in which the load is turned on for an indefinite amount of time. The accessory timer may be coupled to the electronic timer via a single conductor, a wired digital communication link, a radio frequency communication link, an infrared communication link, or a power line carrier communication link.
摘要:
A multiple location electronic timer system comprises an electronic timer and one or more accessory timers. The electronic timer is adapted to be coupled between an AC power source and an electrical load. The electronic timer is operable to enable the delivery of power to the load and to subsequently discontinue the delivery of power to the load automatically after a preset timeout period has elapsed. In response to controls signals received from the accessory timer, the electronic timer is operable to adjust the preset timeout period, enable the delivery of power to the load, discontinue the delivery of power to the load, and to enter a bypass mode in which the load is turned on for an indefinite amount of time. The accessory timer may be coupled to the electronic timer via a single conductor, a wired digital communication link, a radio frequency communication link, an infrared communication link, or a power line carrier communication link.
摘要:
A wall-mountable electrical timer for controlling the delivery of power from an AC power source to an electrical load, such as a lamp or a fan motor, includes: a timer adjustment actuator for selecting a predetermined time period of operation for the load; a toggle actuator for starting the timer, turning off the timer, and placing the timer in a bypass mode of operation; a vertical linear array of light-emitting diode visual indicators for indicating the length of a predetermined time period, the time remaining, and whether the timer is in the bypass mode; a controllably conductive device for regulating the delivery of power from the AC source to the load; and a controller for receiving inputs from the timer adjustment actuator and the toggle actuator, and for transmitting outputs to the visual indicators and the controllably conductive device.
摘要:
A wall-mountable electrical timer for controlling the delivery of power from an AC power source to an electrical load, such as a lamp or a fan motor, includes: a timer adjustment actuator for selecting a predetermined time period of operation for the load; a toggle actuator for starting the timer, turning off the timer, and placing the timer in a bypass mode of operation; a vertical linear array of light-emitting diode visual indicators for indicating the length of a predetermined time period, the time remaining, and whether the timer is in the bypass mode; a controllably conductive device for regulating the delivery of power from the AC source to the load; and a controller for receiving inputs from the timer adjustment actuator and the toggle actuator, and for transmitting outputs to the visual indicators and the controllably conductive device.
摘要:
A wall-mountable electrical timer for controlling the delivery of power from an AC power source to an electrical load, such as a lamp or a fan motor, includes: a timer adjustment actuator for selecting a predetermined time period of operation for the load; a toggle actuator for starting the timer, turning off the timer, and placing the timer in a bypass mode of operation; a vertical linear array of light-emitting diode visual indicators for indicating the length of a predetermined time period, the time remaining, and whether the timer is in the bypass mode; a controllably conductive device for regulating the delivery of power from the AC source to the load; and a controller for receiving inputs from the timer adjustment actuator and the toggle actuator, and for transmitting outputs to the visual indicators and the controllably conductive device.
摘要:
A wall-mountable electrical timer for controlling the delivery of power from an AC power source to an electrical load, such as a lamp or a fan motor, includes: a timer adjustment actuator for selecting a predetermined time period of operation for the load; a toggle actuator for starting the timer, turning off the timer, and placing the timer in a bypass mode of operation; a vertical linear array of light-emitting diode visual indicators for indicating the length of a predetermined time period, the time remaining, and whether the timer is in the bypass mode; a controllably conductive device for regulating the delivery of power from the AC source to the load; and a controller for receiving inputs from the timer adjustment actuator and the toggle actuator, and for transmitting outputs to the visual indicators and the controllably conductive device.
摘要:
A smart dual load control device is operable to control the amount of power delivered from an AC power source to a first electrical load and to switch the power delivered from the AC power source to a second electrical load between an on state and an off state, while providing an advanced set of control features and feedback options to an end user. A control circuit is coupled to first and second controllably conductive devices for controlling the amount of power delivered to the first and second electrical loads, respectively. A power supply generates a DC voltage to power the control circuit and is coupled in parallel electrical connection with the first controllably conductive device such that the power supply is operable to draw current through the first electrical load. The second controllably conductive device is operable to provide substantially zero current through the second electrical load when the second electrical load is in the off state.
摘要:
A load control device is adapted to be disposed in series with an AC voltage source and an electrical load and is operable to provide substantially all voltage provided by the AC voltage source to the load. The load control device comprises a controllably conductive device, a controller, a zero-crossing detector, and a power supply for generating a substantially DC voltage for powering the controller. The power supply is operable to charge an energy storage device to a predetermined amount of energy each half-cycle. The controller is operable to determine when the power supply has stopped charging from the zero-crossing detector each half-cycle, and to immediately render the controllably conductive device conductive to conduct the full load current. Before the controllably conductive device begins to conduct each half-cycle, only a minimal voltage develops across the power supply to allow the energy storage device to charge.
摘要:
A system for independent control of electric motors and electric lights includes a plurality of two-wire wallstations coupled in series via power wires between an alternating-current (AC) source and a light/motor control unit. The light/motor control unit is preferably located in the same enclosure as an electric motor and an electric light and has two outputs for independent control of the motor and the light. The light/motor control unit and the wallstations each include a controller and a communication circuit that is coupled to the power wiring via a communication transformer and communicate with each other using a loop current carrier technique. The light/motor control unit and the wallstations utilize pseudo random orthogonal codes and a median filter in the communication process.
摘要:
A system for independent control of electric motors and electric lights includes a plurality of two-wire wallstations coupled in series via power wires between an alternating-current (AC) source and a light/motor control unit. The light/motor control unit is preferably located in the same enclosure as an electric motor and an electric light and has two outputs for independent control of the motor and the light. The light/motor control unit and the wallstations each include a controller and a communication circuit that is coupled to the power wiring via a communication transformer and communicate with each other using a loop current carrier technique. The light/motor control unit and the wallstations utilize pseudo random orthogonal codes and a median filter in the communication process.