Abstract:
An electrically conductive material may be electrically insulated with a curable composition that includes a curable compound, such as an unsaturated polyester resin, and a functionalized poly(arylene ether) resin. After curing, the composition exhibits increased flexural strength, increased impact strength, and improved tensile properties relative to currently employed insulation materials.
Abstract:
A method of preparing a capped poly(arylene ether) resin includes reacting a capping agent with a blend of two or more poly(arylene ether) resins having different intrinsic viscosities. Cured compositions prepared from these capped poly(arylene ether) resins exhibit improved balances of stiffness, toughness, and dielectric properties compared to compositions with two or more separately capped and isolated poly(arylene ether) resins.
Abstract:
A curable composition containing a functionalized poly(arylene ether), an acryloyl monomer, and a filler is compression molded by a method that includes introducing the composition to a mold, closing the mold and applying a first temperature of about 120 to about 200° C. and a first pressure of about 1,000 to about 40,000 kilopascals for about 1 to about 100 seconds; opening the mold for about 0.005 to about 10 seconds; and closing the mold a second time and applying a second temperature of about 120 to about 200° C. and a second pressure of about 1,000 to about 40,000 kilopascals for about 20 to about 100 seconds. Molded articles formed by the method exhibit improved dielectric properties.
Abstract:
A method of preparing a capped poly(arylene ether) resin includes reacting a capping agent with a blend of two or more poly(arylene ether) resins having different intrinsic viscosities. Cured compositions prepared from these capped poly(arylene ether) resins exhibit improved balances of stiffness, toughness, and dielectric properties compared to compositions with two or more separately capped and isolated poly(arylene ether) resins.
Abstract:
A method of preparing a capped poly(arylene ether) is described. By controlling the order of addition and rates of addition of reactants, solvent, and catalyst, problems associated with known methods are avoided. The method is particularly suitable for large-scale preparations of a capped poly(arylene ether).
Abstract:
A method of preparing a capped poly(arylene ether) resin includes reacting a capping agent with a blend of two or more poly(arylene ether) resins having different intrinsic viscosities. Cured compositions prepared from these capped poly(arylene ether) resins exhibit improved balances of stiffness, toughness, and dielectric properties compared to compositions with two or more separately capped and isolated poly(arylene ether) resins.
Abstract:
A curable composition includes a functionalized poly(arylene ether), an olefinically unsaturated monomer, and a nanofiller. Suitable nanofillers include, for example, carbon nanofibers and nanotubes, main group metal oxides, transition metal oxides, metal carbides, cermet materials, ceramics, glass, perovskites, layered inorganic materials, fibrillar inorganic materials, and combinations thereof. The nanofiller may, optionally, be rendered more organophilic by intercalation with neutral or ionic molecules. Methods of preparing and curing the composition, as well as uses for the cured composition, are described.
Abstract:
A poly(arylene ether) copolymer is the product of oxidative copolymerization of monomers including a monohydric phenol and a dihydric phenol. It has an intrinsic viscosity of about 0.04 to about 0.15 deciliter per gram and, on average, about 1.8 to about 2 hydroxyl groups per molecule. The poly(arylene ether) copolymer is enriched in low molecular weight copolymer chains and copolymer chains that include a terminal unit derived from the dihydric phenol.
Abstract:
A polyfunctional poly(arylene ether) resin may be prepared by a method that includes oxidatively copolymerizing a monohydric phenol and a polyhydric phenol in an aromatic hydrocarbon solvent in the presence of a catalyst comprising a metal ion and a nitrogen-containing ligand to form a solution comprising a polyfunctional poly(arylene ether) having an intrinsic viscosity of about 0.04 to about 0.3 deciliter per gram at 25° C. in chloroform; and contacting the polyfunctional poly(arylene ether) solution with an aqueous solution of a chelating agent to extract the metal ion from the solution; wherein the chelating agent and metal ion are present in a molar ratio of about 1.0 to about 1.5. The method reduces the formation of a dispersion during the chelation step.
Abstract:
A composition is prepared by oxidative copolymerization of specific amounts of 2,6-dimethylphenol, 2,3,6-trimethylphenol, and a hydroxyaryl-terminated polysiloxane. The composition exhibits an increased heat resistance relative to a corresponding composition prepared by copolymerizing 2,6-dimethylphenol and hydroxyaryl-terminated polysiloxane, without 2,3,6-trimethylphenol. The composition is useful as a flame-retardant additive in polymer compositions that require high heat resistance.