摘要:
A method for compensating for critical dimension (CD) variations of pattern lines of a wafer, by the correcting the CD of the corresponding photomask. The photomask comprises a transparent substrate having two substantially opposite surfaces, a first back surface and a second front surface on which front surface an absorbing coating is provided, on which the pattern lines were formed by removing the coating at the pattern lines. The method comprises: determining CD variations across regions of a wafer exposure field relating to the photomask; and providing Shading Elements (SE) within the substrate of the photomask in regions which correlates to regions of the wafer exposure field where CD variations greater than a predetermined target value were determined, whereby the shading elements attenuate light passing through the regions, so as to compensate for the CD variations on the wafer and hence provide and improved CD tolerance wafer.
摘要:
A system for processing a substrate includes a light source to provide light pulses, a stage to support a substrate, optics to focus the light pulses onto the substrate, a scanner to scan the light pulses across the substrate, a computer to control properties of the light pulses and the scanning of the light pulses such that color centers are generated in various regions of the substrate, and at least one of (i) an ultraviolet light source to irradiate the substrate with ultraviolet light or (ii) a heater to heat the substrate after formation of the color centers to stabilize a transmittance spectrum of the substrate.
摘要:
A system for processing a substrate includes a light source to provide light pulses, a stage to support a substrate, optics to focus the light pulses onto the substrate, a scanner to scan the light pulses across the substrate, a computer to control properties of the light pulses and the scanning of the light pulses such that color centers are generated in various regions of the substrate, and at least one of (i) an ultraviolet light source to irradiate the substrate with ultraviolet light or (ii) a heater to heat the substrate after formation of the color centers to stabilize a transmittance spectrum of the substrate.
摘要:
A method for compensating for critical dimension (CD) variations of pattern lines of a wafer, by the correcting the CD of the corresponding photomask. The photomask comprises a transparent substrate having two substantially opposite surfaces, a first back surface and a second front surface on which front surface an absorbing coating is provided, on which the pattern lines were formed by removing the coating at the pattern lines. The method comprises: determining CD variations across regions of a wafer exposure field relating to the photomask; and providing Shading Elements (SE) within the substrate of the photomask in regions which correlates to regions of the wafer exposure field where CD variations greater than a predetermined target value were determined, whereby the shading elements attenuate light passing through the regions, so as to compensate for the CD variations on the wafer and hence provide and improved CD tolerance wafer.
摘要:
A system and method for repairing a photomask (52) for use in a photolithography process is disclosed, the photomask (52), consisting of a substrate layer (38) and a chrome layer (36) over the substrate layer (38), having a defect (42) in the chrome layer (36), the method comprising: providing a pulsed laser source (1) for generating an ultra-short pulsed laser beam; providing optical elements for scanning, directing and focusing the pulsed laser beam at a desired target location; directing the pulsed laser beam through the substrate and focusing it on a target location located inside the substrate adjacent the defect (42) to write a diffractive optical element (34), thus changing the scattering properties of the substrate at the target location.
摘要:
A method and apparatus for generating colored images of at least one color within a light-sensitive glass sample. The glass sample contains light-sensitive chemical components that acquire at least one of a multiplicity of colors in response to actinic radiation and subsequent heating to a temperature that causes color to appear. The method comprises focusing a pulsed laser beam to a target location within the glass, irradiating a plurality of pulses focused in the target location within the glass sample, thus generating a zone of increased opacity to the visible light at the target location and a resultant localized actinic radiation at that zone, displacing the focus point of the laser beam and the glass sample relative to each other by the displacing device in a predetermined manner so as to produce a plurality of zones of increased opacity that form an image, and heating of the sample to a temperature that causes color to appear at the zones of increased opacity.
摘要:
A method for inducing a controllable jet in a transparent liquid is disclosed. The method comprises providing a gas-liquid interface, providing a laser source and generating a beam comprising a sequence of laser pulses, and focusing the beam to a target location within the liquid at a predetermined distance from the gas-liquid interface and creating a plurality of cavitation bubbles, yielding a jet directed away from the gas-liquid interface. Other methods and apparatus are also described and claimed.
摘要:
A method for producing, trapping and manipulating a gas microbubble in liquid is disclosed. The method includes providing a pulsed laser source for generating a pulsed laser radiation and focusing optics; and focusing a pulsed laser radiation to a focal zone within the liquid, with energy exceeding the threshold of optical breakdown in the liquid at the focal zone. It is also suggested to use focusing optics to focus the laser beam to a focal point at a depth close to the compensation depth of the focusing optics for spherical aberration.
摘要:
A method of producing in a solid transparent material, a diffractive optical element for the transformation of an incident wave in a predefined manner, by developing a mathematical model of the element in terms of the required transformation, then using that model for determining a set of points which form the desired diffractie optical element, and then focusing a pulsed laser beam sequentially onto the points in the set, such that it causes optical breakdown damage at those points. Numerical solutions for determining the positions of the set of points from the mathematical model are presented. The production of number of elements for specific applications is described. Complete laser systems capable of monitoring the production of the points in real time according to the results obtained by diffraction of the incident wave by the element under production.