Abstract:
Disclosed is a method and apparatus for integrally controlling lighting according to the status of power reserve stages. The apparatus for integrally controlling lighting according to power reserve stage, comprises: a lighting control result receiver for receiving lighting control result data generated by integrating a lighting identification number and control result information of the LED light source the brightness of which is controlled according to power reserve stage-based lighting control information; a power reserve stage determination unit for determining a power reserve stage based on the received lighting control result data; and a power reserve stage issuer for transmitting the determined power reserve stage to the lighting controller in real time.
Abstract:
Disclosed herein are an LED lighting control apparatus and an LED lighting control system using the apparatus. The proposed system includes a wired lighting unit connected to LED lighting in a wired manner and configured to perform lighting control on LED lighting. A wireless lighting unit performs lighting control on the LED lighting via wireless communication with a wireless terminal and operates in conjunction with the wired lighting unit. A location communication unit allocates individual IDs of LED lighting and performs transmission/reception of data to/from an external terminal. A multi-sensor unit supports multiple sensors and analyzes sensor data collected from the multiple sensors. An active heat dissipation unit dissipates heat from the LED lighting based on analyzed sensor data. A processor control unit controls operations of the wired lighting unit, the wireless lighting unit, the location communication unit, the multi-sensor unit, and the active heat dissipation unit.
Abstract:
Disclosed herein are a Visual Light Communication (VLC) method and apparatus using a DMX-512 network. The VLC apparatus includes a DMX signal generation unit and a DMX signal transmission unit. The DMX signal generation unit generates VLC data packets each including a DMX header, fragmentation information, and a data fragment. The DMX signal transmission unit transmits the VLC data packets to an LED lighting apparatus coupled over a DMX-512 network in order to perform VLC.
Abstract:
Disclosed herein is a method and apparatus that are capable of retransmitting lost RDM packets in RDM protocol to control various devices connected to DMX512 network. The method recovers an error in a remote controller for remotely controlling devices connected to DMX512 network via RDM protocol based on the DMX512 network. A RDM packet to be transmitted to each device is stored in a buffer, and then the RDM packet is transmitted to the device. A preset period of time is waited for so as to receive a response packet from the device. If the response packet is received within the preset period of time, a transaction number of the response packet is checked, and a sequence of the response packet with respect to previously arrived response packets is determined The corresponding RDM packet is retransmitted depending on a result of determination of the sequence.
Abstract:
The present invention relates to a method of processing a Digital Multiplex (DMX)-Visible Light Communication (VLC) address and a device using the method. In the method of processing a DMX-VLC address, a DMX-512 packet is received. It is determined whether the DMX-512 packet includes dimming data by using a start code of the DMX-512 packet. Lighting data is processed using an address recorded in a DMX-512 address field of a DMX-VLC address included in the DMX-512 packet if it is determined that the DMX-512 packet includes the dimming data. Non-lighting data is processed using an address recorded in a DMX-VLC extended address field of the DMX-VLC address if it is determined that the DMX-512 packet does not include dimming data.
Abstract:
Disclosed herein is an apparatus and method for controlling a fault in a lighting network The apparatus includes power selection units respectively provided in a plurality of lighting units connected to one another over a network, each power selection unit being configured to compare a reference voltage with an output voltage sensed from power supply signals input from power supply units respectively provided in a lighting unit, located ahead of a faulty lighting unit, and the faulty lighting unit if a fault occurs in the lighting unit, and to select supply power to be supplied to the faulty lighting unit. Lighting control units control driving of the faulty lighting unit using the selected supply power.
Abstract:
The present invention relates to an inter-vehicle communication apparatus and method using visible light communication. The inter-vehicle communication apparatus using visible light communication includes a spreading code application unit for applying a spreading code to transmission data desired to be transmitted, and a transmission unit for generating a transmission frame based on the transmission data to which the spreading code is applied, and transmitting the transmission frame via a lighting lamp of a vehicle. The transmission frame includes a preamble field required to synchronize the transmission frame, a data field required to transmit the transmission data, and a position field required to provide hopping information of the transmission data.
Abstract:
An apparatus and method for determining the location of a terminal are disclosed herein. The apparatus includes a reception unit, an initiation unit, a selection unit, and a correction unit. The reception unit receives the location identifications (IDs) of one or more illumination lights. The initiation unit initiates the location coordinates of a receiving terminal to the coordinates of an illumination light corresponding to the most frequently received location identification (ID). The selection unit selects the coordinates of an illumination light corresponding to the second-most frequently received location ID. The correction unit calculates the reception ratio of reception from the coordinates of the initiated illumination light to reception from the coordinates of the selected illumination light, and then corrects the coordinates of the receiving terminal based on the calculated reception ratio.
Abstract:
The present invention relates to an intelligent lighting control apparatus and method, which control an intelligent lighting unit including multiple sensors depending on time, place, scene, environment, or the like, based on the results of sensing by the sensors. The intelligent lighting control apparatus includes a multi-sensor unit including multiple sensors, the multi-sensor unit sensing motion of a person or an object within a set sensing area using at least one of the multiple sensors. A lighting control unit controls an operation of a lighting unit based on frequency data corresponding to results of sensing by the multi-sensor unit and a class of lighting type corresponding to the frequency data.
Abstract:
The present invention relates to a motion sensor and method of operating the motion sensor, which can adjust the range of a detection area. For this, the motion sensor according to the present invention includes a detection unit for outputting a variation signal corresponding to motion. A threshold level setting unit variably sets at least one changeable threshold level. A comparison unit detects the motion by performing a comparison operation based on the changeable threshold level and the variation signal at threshold sensitivity corresponding to the changeable threshold level.