Abstract:
An apparatus and method for determining the location of a terminal are disclosed herein. The apparatus includes a reception unit, an initiation unit, a selection unit, and a correction unit. The reception unit receives the location identifications (IDs) of one or more illumination lights. The initiation unit initiates the location coordinates of a receiving terminal to the coordinates of an illumination light corresponding to the most frequently received location identification (ID). The selection unit selects the coordinates of an illumination light corresponding to the second-most frequently received location ID. The correction unit calculates the reception ratio of reception from the coordinates of the initiated illumination light to reception from the coordinates of the selected illumination light, and then corrects the coordinates of the receiving terminal based on the calculated reception ratio.
Abstract:
The present invention relates to an intelligent lighting control apparatus and method, which control an intelligent lighting unit including multiple sensors depending on time, place, scene, environment, or the like, based on the results of sensing by the sensors. The intelligent lighting control apparatus includes a multi-sensor unit including multiple sensors, the multi-sensor unit sensing motion of a person or an object within a set sensing area using at least one of the multiple sensors. A lighting control unit controls an operation of a lighting unit based on frequency data corresponding to results of sensing by the multi-sensor unit and a class of lighting type corresponding to the frequency data.
Abstract:
The present invention relates to a motion sensor and method of operating the motion sensor, which can adjust the range of a detection area. For this, the motion sensor according to the present invention includes a detection unit for outputting a variation signal corresponding to motion. A threshold level setting unit variably sets at least one changeable threshold level. A comparison unit detects the motion by performing a comparison operation based on the changeable threshold level and the variation signal at threshold sensitivity corresponding to the changeable threshold level.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
The present invention relates to a method of processing a Digital Multiplex (DMX)-Visible Light Communication (VLC) address and a device using the method. In the method of processing a DMX-VLC address, a DMX-512 packet is received. It is determined whether the DMX-512 packet includes dimming data by using a start code of the DMX-512 packet. Lighting data is processed using an address recorded in a DMX-512 address field of a DMX-VLC address included in the DMX-512 packet if it is determined that the DMX-512 packet includes the dimming data. Non-lighting data is processed using an address recorded in a DMX-VLC extended address field of the DMX-VLC address if it is determined that the DMX-512 packet does not include dimming data.
Abstract:
Disclosed herein is a method of performing visible-light wireless communication using light-emitting diode (LED) illumination, in which Variable Pulse Position Modulation (VPPM) is used for low-speed data transmission and dimming of illumination, and orthogonal frequency division multiplexing (OFDM) modulation is used in a VPPM on period for high-speed data transmission.
Abstract:
Disclosed herein is visible light communication technology having improved reception performance regardless of dimming control of lighting based on VPPM signals. A visible light communication apparatus includes a preamble generator for generating a preamble signal, a header generator for generating a PHY header, which includes information about the physical layer of a transmission packet and dimming information including the target dimming level of the transmission packet, a fixed dimming VPPM modulator for modulating the PHY header into a first VPPM signal according to a predetermined ratio, a transmission unit signal processor for generating transmission data by performing signal processing for data to be transmitted, a variable dimming VPPM modulator for modulating the transmission data into a second VPPM signal having the target dimming level of the transmission packet, and a signal synthesizer for forming the transmission packet by combining the first and second VPPM signals.
Abstract:
Disclosed herein are an apparatus and method for controlling a lighting network. The apparatus for controlling lighting network includes a control device and a plurality of control gears. The control device generates and transfers commands to control lighting. The plurality of control gears receives the commands from the control device and control lighting. The control device assigns a right to use a lighting network to the control gears, and the control gears send information about a change in a lighting state or error details to the control device using the right to use a lighting network.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
Disclosed herein are a method for recognizing a table for an electronic menu system based on visible light and an apparatus for the same. The method includes receiving, by a visible light receiver connected to a smart device provided to a customer in a restaurant, multiple visible light signals from multiple lamps installed in the restaurant; detecting at least one valid signal from the multiple visible light signals in consideration of the multiple visible light signals and sensor data collected from a sensor installed in the smart device; and recognizing a table at which the customer is sitting using table information included in the at least one valid signal.