Abstract:
Disclosed are compositions, such as inkjet inks, for jetting onto a ceramic substrate, and associated methods and systems. The compositions comprise a pigment compound that is configured to be jetted on a ceramic substrate during a ceramic inkjet process to impart a color effect to the ceramic substrate, and a reduction agent which, when exposed to a firing temperature, reacts with the pigment compound to cause a reduction reaction. In some embodiments, the pigment compound comprises jettable copper particles, which can cause the fired composition to take on a red or oxblood color, which can be used for decoration.
Abstract:
A radiation-curable ink composition for application to glass, ceramic, or metal by an inkjet printer. The ink composition can be applied to a glass, ceramic, or metal substrate to decorate, protect, etc. the substrate. In some embodiments, the ink composition includes a glass frits component, a chromophore component, and a UV-curable component. The glass frits component facilitates the fusing of the ink component with a glass, ceramic, or metal substrate to which the ink composition is applied. The chromophore component is the primary colorant of the ink composition. The UV-curable component facilitates activation of polymerization upon exposure to ultra-violet (UV) radiation, which causes the ink composition to cure and fix/pin to the underlying substrate. After the ink composition is applied to a substrate and cured by exposure to UV radiation, the substrate is heated to a temperature that causes the ink composition to fuse with the substrate.
Abstract:
Embodiments of the invention combine pigmented and soluble salt digital ink technologies by dispersing water-soluble metal salts as particles in a non-aqueous inkjet ink fluid. The metal salts are dispersed as pigment-like particles, and not as a dissolved solute.
Abstract:
Disclosed are compositions, such as inkjet inks or glazes, for jetting onto a ceramic substrate, and associated methods and systems. The compositions are configured to produce a blister relief effect, wherein the incorporation of inkjet technology provides precise control over the location and degree of blistering. The enhanced compositions are configured to form gas bubbles when exposed to the elevated temperatures of a firing cycle, wherein the formed gas is trapped within the glaze, causing an expansion or blistering of the glaze, which results in a raised relief.
Abstract:
Disclosed are compositions, such as inkjet inks or glazes, for jetting onto a ceramic substrate, and associated methods and systems. The compositions are configured to produce a blister relief effect, wherein the incorporation of inkjet technology provides precise control over the location and degree of blistering. The enhanced compositions are configured to form gas bubbles when exposed to the elevated temperatures of a firing cycle, wherein the formed gas is trapped within the glaze, causing an expansion or blistering of the glaze, which results in a raised relief.
Abstract:
A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. A computer system receives information defining a relief pattern for forming the 3D relief using a digital inkjet printer. From the information, a feature vector is extracted comprising one or more features describing the 3D relief. A machine learning model is used to generate control commands based on the feature vector. The machine learning model is trained to generate the control commands to configure the digital inkjet printer to apply binder ink to a first region of a surface of the substrate. The applied binder ink is configured to form a protective layer over the first region of the surface of the substrate. The digital inkjet printer is configured to apply solvent ink to the surface of the substrate.
Abstract:
A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. In an example embodiment, the introduced technique includes application of binder ink to a portion of the surface of a substrate using a digital inkjet process. This binder ink forms a barrier layer which protects the portion of the surface of the substrate. Next, a brushing process is applied to remove unprotected portions of the substrate, thereby forming the 3D relief in the substrate.
Abstract:
A 3D relief effect is created on a ceramic tile with an inkjet printer and an inkjet print head by printing a relief pattern with an effect ink having a low surface tension on the ceramic tile. The inkjet printer and inkjet print head apply an aqueous glaze slurry having a high surface tension on top of the effect ink. An image is printed on the glaze and the tile is fired. A difference in surface tensions causes the aqueous glaze to move away from the printed effect ink, resulting in a relief pattern in the image at locations of the printed relief pattern.
Abstract:
Disclosed are compositions, such as inkjet inks, for jetting onto a ceramic substrate, and associated methods and systems. The compositions comprise a pigment compound that is configured to be jetted on a ceramic substrate during a ceramic inkjet process to impart a color effect to the ceramic substrate, and a reduction agent which, when exposed to a firing temperature, reacts with the pigment compound to cause a reduction reaction. In some embodiments, the pigment compound comprises jettable copper particles, which can cause the fired composition to take on a red or oxblood color, which can be used for decoration.