Abstract:
In some aspects, reciprocating engines can include a drive mechanism for generating a rotational motion output from reciprocating piston assembly, where the drive mechanism includes an axially translating y-axis component to reciprocate along a y-axis with the piston assembly; an x-axis component: i) configured to reciprocate substantially perpendicularly to the y-axis, ii) having an internal ring gear, and iii) having an orbital engagement component substantially concentric with the internal ring gear; an output shaft assembly having an output pinion gear engaging tangentially with the internal ring gear; and a stationary engagement component substantially concentric with the output shaft assembly, the stationary engagement component interfacing with the orbital engagement component, the interfacing between the stationary engagement component and the orbital engagement component applying a force to the x-axis component to maintain contact between the internal ring gear and the output pinion gear.
Abstract:
Systems and methods are described for a reciprocating mechanism. The system includes at least one axially translating y-axis component configured to reciprocate substantially along a y-axis with a reciprocating motion of a piston assembly relative to a base. The system also includes at least one x-axis component slidingly coupled via at least one bearing assembly to and translating with the at least one y-axis component along the y-axis. The at least one x-axis component is configured to reciprocate substantially perpendicularly to the y-axis relative to the at least one y-axis component, and includes an orbital output component and an orbital linking component disposed substantially concentric with the orbital output component. The system also includes a stationary output component rotatably attached to the base in a direction that is substantially perpendicular to both the x-axis and y-axis, and a stationary linking component rotatably attached to the base in a direction that is substantially concentric with the stationary output component.
Abstract:
In some aspects, reciprocating engines can include a drive mechanism for generating a rotational motion output from reciprocating piston assembly, where the drive mechanism includes an axially translating y-axis component to reciprocate along a y-axis with the piston assembly; an x-axis component: i) configured to reciprocate substantially perpendicularly to the y-axis, ii) having an internal ring gear, and iii) having an orbital engagement component substantially concentric with the internal ring gear; an output shaft assembly having an output pinion gear engaging tangentially with the internal ring gear; and a stationary engagement component substantially concentric with the output shaft assembly, the stationary engagement component interfacing with the orbital engagement component, the interfacing between the stationary engagement component and the orbital engagement component applying a force to the x-axis component to maintain contact between the internal ring gear and the output pinion gear.
Abstract:
In some aspects, reciprocating engines can include a first reciprocating mechanism that includes an axially translating y-axis component configured to reciprocate substantially along a y-axis with a reciprocating motion of a piston assembly relative to a base to which the y-axis component is slidingly attached. The first reciprocating mechanism can include an x-axis component slidingly coupled to and translating with the y-axis component along the y-axis, the x-axis component being: i) configured to reciprocate substantially perpendicularly to the y-axis relative to the y-axis component, ii) comprising an orbital output component, and iii) comprising an orbital linking component disposed substantially concentric with the orbital output component. The first reciprocating mechanism can include a stationary output component and a stationary linking component that are substantially concentric and disposed in a direction that is substantially perpendicular to the x-y plane.
Abstract:
Systems and methods are described for a reciprocating mechanism. The system includes at least one axially translating y-axis component configured to reciprocate substantially along a y-axis with a reciprocating motion of a piston assembly relative to a base. The system also includes at least one x-axis component slidingly coupled via at least one bearing assembly to and translating with the at least one y-axis component along the y-axis. The at least one x-axis component is configured to reciprocate substantially perpendicularly to the y-axis relative to the at least one y-axis component, and includes an orbital output component and an orbital linking component disposed substantially concentric with the orbital output component. The system also includes a stationary output component rotatably attached to the base in a direction that is substantially perpendicular to both the x-axis and y-axis, and a stationary linking component rotatably attached to the base in a direction that is substantially concentric with the stationary output component.
Abstract:
In some aspects, reciprocating engines can include a first reciprocating mechanism that includes an axially translating y-axis component configured to reciprocate substantially along a y-axis with a reciprocating motion of a piston assembly relative to a base to which the y-axis component is slidingly attached. The first reciprocating mechanism can include an x-axis component slidingly coupled to and translating with the y-axis component along the y-axis, the x-axis component being: i) configured to reciprocate substantially perpendicularly to the y-axis relative to the y-axis component, ii) comprising an orbital output component, and iii) comprising an orbital linking component disposed substantially concentric with the orbital output component. The first reciprocating mechanism can include a stationary output component and a stationary linking component that are substantially concentric and disposed in a direction that is substantially perpendicular to the x-y plane.
Abstract:
In some aspects, reciprocating engines can include a drive mechanism for generating a rotational motion output from reciprocating piston assembly, where the drive mechanism includes an axially translating y-axis component to reciprocate along a y-axis with the piston assembly; an x-axis component: i) configured to reciprocate substantially perpendicularly to the y-axis, ii) having an internal ring gear, and iii) having an orbital engagement component substantially concentric with the internal ring gear; an output shaft assembly having an output pinion gear engaging tangentially with the internal ring gear; and a stationary engagement component substantially concentric with the output shaft assembly, the stationary engagement component interfacing with the orbital engagement component, the interfacing between the stationary engagement component and the orbital engagement component applying a force to the x-axis component to maintain contact between the internal ring gear and the output pinion gear.
Abstract:
In some aspects, reciprocating engines can include a drive mechanism for generating a rotational motion output from reciprocating piston assembly, where the drive mechanism includes an axially translating y-axis component to reciprocate along a y-axis with the piston assembly; an x-axis component: i) configured to reciprocate substantially perpendicularly to the y-axis, ii) having an internal ring gear, and iii) having an orbital engagement component substantially concentric with the internal ring gear; an output shaft assembly having an output pinion gear engaging tangentially with the internal ring gear; and a stationary engagement component substantially concentric with the output shaft assembly, the stationary engagement component interfacing with the orbital engagement component, the interfacing between the stationary engagement component and the orbital engagement component applying a force to the x-axis component to maintain contact between the internal ring gear and the output pinion gear.
Abstract:
In some aspects, reciprocating engines can include a drive mechanism for generating a rotational motion output from reciprocating piston assembly, where the drive mechanism includes an axially translating y-axis component to reciprocate along a y-axis with the piston assembly; an x-axis component: i) configured to reciprocate substantially perpendicularly to the y-axis, ii) having an internal ring gear, and iii) having an orbital engagement component substantially concentric with the internal ring gear; an output shaft assembly having an output pinion gear engaging tangentially with the internal ring gear; and a stationary engagement component substantially concentric with the output shaft assembly, the stationary engagement component interfacing with the orbital engagement component, the interfacing between the stationary engagement component and the orbital engagement component applying a force to the x-axis component to maintain contact between the internal ring gear and the output pinion gear.