Abstract:
A method for the preparation of a first sulfone compound of the formula: ##STR1## wherein R.sub.a is ##STR2## where R.sub.b is Br and R.sub.c is H except that R.sub.b and R.sub.c together may be an electron pair when R.sub.6 is a radical of the formula: ##STR3## wherein X.sub.1 is independently chlorine, bromine or iodine and R.sub.1 and R.sub.2 are independently at each occurrence hydrogen or, substituted or unsubstituted, phenyl or alkyl where the substituents are halogen or alkoxy or additional --SO.sub.2 Br groups; provided that, each carbon atom of R.sub.1 or R.sub.2 which contains --SO.sub.2 Br also contains an X.sub.1 group and wherein R.sub.3 through R.sub.9 are independently --OZ,--C.sub.6 M.sub.5,--Z,--SiZ.sub.3 or --X.sub.2, where Z is hydrogen or substituted or unsubstituted phenyl, alkyl, alkenyl or alkynyl; X.sub.2 is chlorine, bromine, iodine or fluorine; M is independently at each occurrence Z or X.sub.2 ; R.sub.3 and R.sub.4 may together be an electron pair; two or more of R.sub.3, R.sub.4, R.sub.5 and R.sub.6 may be combined together and with one or more of C.sub.2, C.sub.3 or C.sub.4 to form a ring structure and R.sub.1 and R.sub.2 may be joined together with C.sub.1 to form a ring structure; said method comprising reacting a 1-haloalkyl 1-sulfonyl halide with a second compound of the formula: ##STR4## at a temperature below 25.degree. C. for less than 12 hours where R.sub.3, R.sub.4 and R.sub.5 are as previously described, R.sub.10 is R.sub.6 as previously described or R.sub.11, a radical of the formula: ##STR5##This invention was made with Government support under CHE 811530801 awarded by the National Science Foundation. The Government has certain rights in this invention.
Abstract:
A novel process is disclosed for the preparation of dihydropyridine compounds and derivatives thereof, and more particularly felodipine. The process to prepare felodipine involves a two step procedure condensing 2,3-dichlorobenzaldehyde with methyl acetoacetate in the presence of a catalyst system. The resultant benzylidine intermediate is sequentially reacted with ethyl aminocrotonate to provide felodipine. The novelty of the present invention resides in part on (1) a new catalyst system not previously disclosed for the preparation of felodipine, (2) the absence of acid(s), (3) the control of reaction conditions to yield lower amounts of unreacted aldehyde compared to known reactions, (4) a simplified purification process, and (5) formation of negligible quantities of symmetrical diester byproducts.
Abstract:
Novel processes for the preparation of a new class of coumarin derivatives, which are useful as photoactive compounds in a wide variety of applications including photoresists and other opto-electronic applications, are disclosed and claimed. The process involves a multi-step synthetic method for the preparation of ether, ester, carbonate, or sulfonate derivative of 5-hydroxy, 6-hydroxy, or 7-hydroxy-3-diazo-4-oxo-3,4-dihydrocoumarin starting from the corresponding dihydroxyacetophenone. The compounds formed from the process of the present invention exhibit very high photosensitivity in the deep ultraviolet (DUV) region (ca. 250 nm), and therefore, are useful as photoactive compounds in DUV photoresist formulations.
Abstract:
A force detecting microsensor comprises a single crystal Si substrate, a single crystal cone formed on the substrate and a resilient electrode mounted above the tip of the Si cone. The space between the tip of the Si cone and the resilient electrode is maintained in a vacuum environment and the distance between the tip and the resilient anode is in the order of a few atomic diameters. The tunneling effect of electrons occurs between the tip of the Si cone and the resilient electrode when a potential is applied to the resilient electrode and the Si cone tip. The resilient electrode deflects as a result of the force acting on the microsensor. The deflection of the resilient electrode alters the electrical characteristics between the resilient electrode and the Si cone tip. The changes in the electrical characteristics can be measured to determine the level of force acting on the microsensor. The process for making the microsensor according to the invention comprises the steps of forming an insulating layer and support layer on the substrate, forming a recess in the insulating layer and aperture in the support layer, depositing a single crystal Si cone on the substrate and fully enclosing the Si cone within the recess of the support layer and the insulating layer.
Abstract:
A force detecting microsensor comprises a single crystal Si substrate, a single crystal cone formed on the substrate and a resilient electrode mounted above the tip of the Si cone. The space between the tip of the Si cone and the resilient electrode is maintained in a vacuum environment and the distance between the tip and the resilient anode is in the order of a few atomic diameters. The tunneling effect of electrons occurs between the tip of the Si cone and the resilient electrode when a potential is applied to the resilient electrode and the Si cone tip. The resilient electrode deflects as a result of the force acting on the microsensor. The deflection of the resilient electrode alters the electrical characteristics between the resilient electrode and the Si cone tip. The changes in the electrical characteristics can be measured to determine the level of force acting on the microsensor. The process for making the microsensor according to the invention comprises the steps of forming an insulating layer and support layer on the substrate, forming a recess in the insulating layer and aperture in the support layer, depositing a single crystal Si cone on the substrate and fully enclosing the Si cone within the recess of the support layer and the insulating layer.
Abstract:
Novel 4-substituted acetophenone anils and methods for preparing 1,3,5-tris(4'-hydroxyphenyl)benzenes from 4-substituted acetophenones such as 4-hydroxyacetophenones or, from substituted 4-hydroxyacetophenone-anils such as 4-hydroxyacetophenone-anil by reacting the 4-substituted acetophenone or corresponding anil with an aniline derivative.
Abstract:
A process for the preparation of anthraquinone compounds comprises reaction of phthalic anhydride with a benzene derivative in a reaction mixture containing HF and BF.sub.3 as catalyst at a first temperature up to about 30.degree. C. and, subsequently, at an elevated temperature.
Abstract:
Disclosed are methods of producing of alkoxy arylamine compounds which find particular use in the syntheses of pharmaceutical drug. The alkoxy arylamine compounds generally have the formula: H2N—Ar—OR wherein Ar is an unsubstituted or substituted aromatic group, and R is an unsubstituted or substituted alkyl or aryl group. The methods comprise generally, the steps of (a) alkylating a protected-amino arylalcohol to form a protected-amino arylether; and (b) deprotecting said protected-amino arylether to form an alkoxy arylamine compound.
Abstract:
The present invention provides processes which are flexible, cost effective, and commercially viable methods of manufacturing or producing products from 2-hydroxyacetophenone (2-HAP). Of particular interest of the available products are 4-hydroxycoumarin, warfarin-alkali salt, preferably warfarin sodium and warfarin-alkali salt-isopropyl alcohol (2-propanol) complex, more preferably warfarin-sodium-isopropyl alcohol complex. As is known, these compounds are useful as vitamin K dependent anticoagulants in the treatment of humans and animals. In different doses, they are also useful as rodenticide. The inventive process involves contacting 2-HAP, carbonate ester and effective base followed by treatment with an unsaturated ketone and phase transfer catalyst to ultimately yield product.
Abstract:
Novel 4-substituted acetophenone anils and methods for preparing 1,3,5-tris(4'-hydroxyphenyl)benzenes from 4-substituted acetophenones such as 4-hydroxyacetophenones or, from substituted 4-hydroxyacetophenone-anils such as 4-hydroxyacetophenone-anil by reacting the 4-substituted acetophenone or corresponding anil with an aniline derivative.