Abstract:
The invention relates to a method of measuring pressure in which an evacuated capsule (1) containing a resonant element (5) is placed in the fluid whose pressure is to be measured, a vibration characteristic of the element is measured, and the pressure is deduced from said characteristic. A resonant element is used which, during measurement, is to be found in a stress state that is close to buckling. For this purpose, it is possible to use heater means for heating the element and servo-controlled so as to keep the frequency of vibration thereof constant. The resonant element can be made of silicon. The invention is particularly applicable to oil wells.
Abstract:
A density and viscosity sensor 1 for measuring density and viscosity of fluid F, the sensor 1 comprising: a resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G arranged to be immersed in the fluid F, an actuating/detecting element 4, 4A, 4B coupled to the resonating element, a connector 7 for coupling to the actuating/detecting element 4, 4A, 4B, a housing 2 defining a chamber 8A isolated from the fluid F, the housing 2 comprising an area of reduced thickness defining a membrane 9 separating the chamber 8A from the fluid F, the membrane 9 having a thickness enabling transfer of mechanical vibration between the actuating/detecting element 4, 4A, 4B and the resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G, the actuating/detecting element 4, 4A, 4B is positioned within the chamber so as to be isolated from the fluid F and mechanically coupled to the membrane 9, the resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G arranged to be immersed in the fluid F is mechanically coupled to the membrane 9, wherein the resonating element 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G has a shape defining a first resonance mode and a second resonance mode characterized by different resonant frequencies F1, F2 and different quality factors Q1, Q2, the first resonance mode moving a volume of fluid, the second mode shearing a surrounding fluid.
Abstract:
A density and viscosity sensor 1 for measuring density and viscosity of fluid F, the sensor 1 comprising a resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F, an actuating/detecting element 4A, 4B coupled to the resonating element, and a connector 7 for coupling to the actuating/detecting element 4A, 4B. The sensor 1 further comprises a housing 2 defining a chamber 8A isolated from the fluid F, the housing 2 comprising an area of reduced thickness defining a membrane 9 separating the chamber 8A from the fluid F. The actuating/detecting element 4A, 4B is positioned within the chamber so as to be isolated from the fluid F and mechanically coupled to the membrane 9. The resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F is mechanically coupled to the membrane 9. The membrane 9 has a thickness enabling transfer of mechanical vibration between the actuating/detecting element 4A, 4B and the resonating element 3, 3A, 3B, 3C, 3D.
Abstract:
A density and viscosity sensor 1 for measuring density and viscosity of fluid F, the sensor 1 comprising a resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F, an actuating/detecting element 4A, 4B coupled to the resonating element, and a connector 7 for coupling to the actuating/detecting element 4A, 4B. The sensor 1 further comprises a housing 2 defining a chamber 8A isolated from the fluid F, the housing 2 comprising an area of reduced thickness defining a membrane 9 separating the chamber 8A from the fluid F. The actuating/detecting element 4A, 4B is positioned within the chamber so as to be isolated from the fluid F and mechanically coupled to the membrane 9. The resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F is mechanically coupled to the membrane 9. The membrane 9 has a thickness enabling transfer of mechanical vibration between the actuating/detecting element 4A, 4B and the resonating element 3, 3A, 3B, 3C, 3D.
Abstract:
A density and viscosity sensor for measuring density and viscosity of a fluid, and method for measuring, are presented herein. The sensor comprises a resonating element, and actuating/detecting element, a connector and a housing. The actuating/detecting element is positioned within a chamber defined by the housing so as to be isolated from the fluid. The resonating element is arranged to be immersed in the fluid, and has a shape defining a first resonance mode and a second resonance mode characterized by different resonance frequencies and different quality factors. The first resonance mode is adapted to move a volume of fluid, and the second resonance mode is adapted to shear a surrounding fluid.
Abstract:
A drive train comprising an electric machine including a rotor and a stator, the stator being connected to an alternating grid and having a stator frequency, and a bidirectional system for converting an alternating current into another alternating current. The conversion system is connected between the grid and the rotor, and comprises an AC-DC converter connected to the grid, an inverter connected between the AC-DC converter and the rotor, and a device for controlling switches of the inverter according to a control law. The control law is such that the active power exchanged by the inverter with the rotor is essentially always lower than 0.3 times the nominal power of the direct current specifically circulating between the AC-DC converter and the inverter, for the frequencies of a target interval of between 0.6 times the stator frequency and 1.4 times the stator frequency.
Abstract:
A system for converting a first electric voltage into a second electric voltage, comprising: at least two input terminals and two output terminals; and switching members disposed between the terminals, which can convert the first voltage into the second voltage. At least one switching member comprises at least two arms connected in parallel and each arm includes an electronic switch that can be controlled such as to occupy either an on-state or an off-state, said switch comprising a control electrode and two conduction electrodes that conduct current in the on-state. The switching member comprises a common control terminal connected to the control electrode of the switch of each arm, as well as a first common conduction terminal and a second common conduction terminal connected respectively to a first conduction electrode and a second conduction electrode of the switch of each of the arms.
Abstract:
A drive train comprising an electric machine including a rotor and a stator, the stator being connected to an alternating grid and having a stator frequency, and a bidirectional system for converting an alternating current into another alternating current. The conversion system is connected between the grid and the rotor, and comprises an AC-DC converter connected to the grid, an inverter connected between the AC-DC converter and the rotor, and a device for controlling switches of the inverter according to a control law. The control law is such that the active power exchanged by the inverter with the rotor is essentially always lower than 0.3 times the nominal power of the direct current specifically circulating between the AC-DC converter and the inverter, for the frequencies of a target interval of between 0.6 times the stator frequency and 1.4 times the stator frequency.
Abstract:
A motor vehicle power steering system includes a hydraulic pump, an electric motor for driving the pump, and a control unit for controlling the electric motor. The control unit includes means for controlling the power supply voltage applied to the electric motor so that said voltage increases up to a maximum value when the load impedance decreases from its unloaded value, and is at a low value when said load impedance is in the vicinity of its unloaded value.
Abstract:
Controlling an H-bridge of switches, characterized in that during a cycle, the current takes a peak value of constant sign during a continuous portion corresponding to a cycle fraction equal to .vertline. /U.vertline., where is the mean voltage applied to the load and U is the voltage of the DC voltage source, said portion being preceded by a cycle portion corresponding to a cycle fraction equal to 1/2(1-.vertline. /U.vertline.) during which the two switches (I1, I2) of the H-bridge which are connected to ground are closed (or open as the case may be), and followed by a cycle portion likewise corresponding to a cycle fraction equal to 1/2(1-.vertline. /U.vertline.) during which the two switches (I1, I2) of the H-bridge which are connected to ground are open (or closed as the case may be).
Abstract translation:控制开关的H桥,其特征在于,在一个周期期间,电流在对应于等于| V / U |的周期分数的连续部分期间获得恒定符号的峰值,其中V是平均值 施加到负载的电压,U是DC电压源的电压,所述部分之前是对应于等于+ E的周期分数的周期部分,f 1/2 + EE(1 | V / U | ),其中连接到地的H桥的两个开关(I1,I2)是闭合的(或者视情况而定),并且后面是同样对应于等于+ E的周期分数的周期部分, 其中连接到地面的H桥的两个开关(I1,I2)打开(或视情况而定)闭合的1/2 + EE(1 | V / U |)。