摘要:
An optical coupler reduces differential mode delay in a fiber by reducing an amount of light incident on the fiber in a region in which the refractive index is not well controlled. This region of the fiber is typically in the center of the fiber The optical coupler directs light away from the this region and/or provides a high angle of incidence to any light on this region. A diffuser may be used to reduce sensitivity of the coupler to any fluctutations in the output of the light source. The optical coupler does not need to be offset from the center of the multi-mode coupler. A phase function of an azimuthal mode of the fiber may be imposed on the light beam so that a substantial null on axis is maintained even after propogation of the light beam beyond the depth of focus of the coupler. A diffractive element generating a beam which propogates in a spiral fashion along an axis allows the shape of the beam to be maintained for longer than a depth of focus of the diffractive element.
摘要:
An optical coupler reduces differential mode delay in a fiber by reducing an amount of light incident on the fiber in a region in which the refractive index is not well controlled. This region of the fiber is typically in the center of the fiber. The optical coupler directs light away from the this region and/or provides a high angle of incidence to any light on this region. A diffuser may be used to reduce sensitivity of the coupler to any fluctutations in the output of the light source. The optical coupler does not need to be offset from the center of the multi-mode coupler. A phase function of an azimuthal mode of the fiber may be imposed on the light beam so that a substantial null on axis is maintained even after propogation of the light beam beyond the depth of focus of the coupler. A diffractive element generating a beam which propogates in a spiral fashion along an axis allows the shape of the beam to be maintained for longer than a depth of focus of the diffractive element.
摘要:
An integrated parallel transmitter includes an array of light sources, a corresponding array of diffractive elements splitting off a portion of the beam to be monitored, a corresponding array of power monitors for respectively monitoring each light source, and an array of couplers that couples light into a corresponding waveguide. The coupler is preferably a phase-matched coupler. All of the passive optical elements are integrated onto a single substrate or a plurality of substrates that have been bonded together on a wafer level.
摘要:
A method of patterning a plurality of optical rods includes bonding a plurality of optical rods into an array wherein each of the optical rods is aligned so that an exposed end face of each of the optical rods is oriented in a common direction. The exposed end faces of the optical rods are patterned so that each of the exposed end faces has a three-dimensional pattern formed thereon. These patterned optical rods can then be separated and used in the fabrication of optical systems.
摘要:
A monitor for a light beam creates a monitor beam by deflecting a portion of the application beam and further manipulating the monitor beam and/or the application beam to allow more efficient use thereof. For example, the monitor beam may be collimated to allow an increase in spacing between the device outputting the light beam and a detector for sensing the monitor beam. Alternatively or additionally, the monitor beam may be focused to allow use of a smaller detector and of a smaller percentage of the application beam. The diffractive element deflecting the beam may be either transmissive or reflective. The additionally manipulation of the monitor beam and/or the application beam may be provided by the same diffractive element which deflects the beam, which is particularly useful when the diffractive element is reflective, and/or by additional optical elements.
摘要:
A power monitor for a light emitter emitting from a single face creates a monitor beam by deflecting a portion of the application beam and further manipulating the monitor beam to allow more efficient use of the monitor beam. For example, the monitor beam may be collimated to allow an increase in spacing between the light emitter and a detector for sensing the monitor beam. Alternatively or additionally, the monitor beam may be focused to allow use of a smaller detector and of a smaller percentage of the application beam. The diffractive element deflecting the beam may be either transmissive or reflective. The additionally manipulation of the monitor beam may be provided by the same diffractive element which deflects the beam, which is particularly useful when the diffractive element is reflective, and/or by additional optical elements.
摘要:
An apparatus is provided for moving a floating or submerged marine structure. Embodiments include a track fixedly mounted near or under the waterline surface, extending from a first point to a second point for defining a path of motion of the marine structure. A riser cable has a first end movably attached to the track between the first and second points, and a second end fixedly attached to the marine structure. A trolley is attached to the first end of the riser cable between the first end and the track, and has a roller for engaging the track for distributing environmental forces of the marine structure to the track. A drive unit is attached to the marine structure (or to the trolley) for moving the marine structure (or the trolley) such that the marine structure or one end of the marine structure moves along the path of the track.
摘要:
A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
摘要:
An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
摘要:
Our wafer scale processing techniques produce chip-laser-diodes with a diffraction grating (78) that redirects output light out the top (88) and/or bottom surfaces. Generally, a diffraction grating (78) and integrated lens-grating (78) are used herein to couple light from the chip to an output fiber (74), and the lens-grating (78) is spaced from the diffraction grating (76). Preferably the diffraction grating (76) and integrated lens grating (78) are also used to couple light from the output fiber (74) back to the active region of the chip. The integrated lens-grating (78) can be in a coupling block (82). The use of a coupling block (82) can eliminate “facet-type damage”. A coupling block (82) is generally used herein to couple light from the chip to an output fiber (74), and preferably to couple feedback reflected from the fiber (74) back to the chip.