Surface ripple wave diffusion in apertured free ink surface level
controllers for acoustic ink printers
    1.
    发明授权
    Surface ripple wave diffusion in apertured free ink surface level controllers for acoustic ink printers 失效
    表面波纹扩散在无孔墨水表面液位控制器的声学墨水打印机

    公开(公告)号:US5216451A

    公开(公告)日:1993-06-01

    申请号:US815002

    申请日:1992-12-27

    IPC分类号: B41J2/14

    CPC分类号: B41J2/14008

    摘要: The free ink surface levels of acoustic ink printers are controlled by cap structures that have substantially non-retroreflective aperture configurations. The non-retroreflective configurations of the apertures of these cap structures cause diffusive scattering or directional deflection of the reflected surface ripple waves, thereby significantly reducing the time that is required for the oscillatory perturbations, which are caused by reflection of the surface ripple waves that are generated during the droplet ejection process, to dissipate to a negligibly low amplitude in the critical local areas of the ejection sites. This, in turn, increases the droplet ejection rates at which printers having such cap structures can be operated asynchronously.

    摘要翻译: 声学墨水打印机的自由墨水表面水平由具有基本上非回射孔径配置的盖结构控制。 这些盖结构的孔的非回射结构引起反射表面纹波的漫射散射或方向偏转,从而显着减少振荡扰动所需的时间,这是由表面波纹波的反射引起的 在液滴喷射过程中产生,以在喷射位置的关键局部区域中消散到可忽略的低振幅。 这又增加了具有这种帽结构的打印机可以异步操作的液滴喷射速率。

    Capping structures for acoustic printing
    3.
    发明授权
    Capping structures for acoustic printing 失效
    用于声学印刷的封盖结构

    公开(公告)号:US5686945A

    公开(公告)日:1997-11-11

    申请号:US337913

    申请日:1994-11-14

    IPC分类号: B41J2/175 B41J2/14 B41J2/135

    摘要: Acoustically thin capping structures and acoustic droplet ejectors having fluid wells and which use such capping structures to create fluid cells. The inventive capping structures permit the accurate positioning of the free surface of a fluid, permit acoustically induced fluid droplet ejection, and prevent fluid from spilling from the fluid wells. "Acoustically thin" means that the thickness of the capping structure is small enough that the acoustic energy that is lost passing through the capping structure is less than 50% of the incident acoustic energy.

    摘要翻译: 声学薄封盖结构和具有流体孔的声学液滴喷射器,并且使用这种封盖结构来产生流体池。 本发明的封盖结构允许流体的自由表面的精确定位,允许声学诱导的液滴喷射,并且防止流体从流体孔溢出。 “声学上薄”意味着封盖结构的厚度足够小,使得通过封盖结构失去的声能小于入射声能的50%。

    Liquid surface control with an applied pressure signal in acoustic ink
printing
    4.
    发明授权
    Liquid surface control with an applied pressure signal in acoustic ink printing 失效
    液压表面控制与应用压力信号在声学印刷中的应用

    公开(公告)号:US5229793A

    公开(公告)日:1993-07-20

    申请号:US634248

    申请日:1990-12-26

    IPC分类号: B41J2/015 B41J2/14

    摘要: This invention is an acoustic ink printer. It has a pool of ink (33) with a free surface (36). Underneath the ink is a print head (10) which has droplet ejectors (14) for irradiating the free surface (36) of the pool of ink (33) with focused acoustic radiation (44). Over the free surface (36) of the pool of ink (33) is a membrane (16), with one or more apertures (20) aligned with the droplet ejectors (14), in intimate contact with the free surface (36) of the pool of ink (33). The apertures 20 are substantially larger than the waist diameter (46) of the focused acoustic radiation (44). An external pressure source (50) maintains the meniscus (48) of the pool of ink (33) substantially in the focal plane (52) of the focused acoustic radiation (44) during operation of the droplet ejectors (14). A piezoelectric crystal (24) is in intimate contact with the pool of ink (33). An electrical signal source (32) energizes the piezoelectric crystal (24) in order to apply a pressure signal (54) on demand to the pool of ink (33) during operation of the droplet ejectors (14). The different pressure signals (54) resulting from application of different electrical signals (29) to the piezoelectric crystal (24) can be utilized to eject individual droplets (38) of ink (33) from the free surface (34) of the ink (33) on demand, or to effect finer control over the free surface (34) of the ink (33) than is possible with the external pressure source (50) by itself.

    Near field acoustic ultrasonic microscope system and method
    7.
    发明授权
    Near field acoustic ultrasonic microscope system and method 失效
    近场声超声显微镜系统及方法

    公开(公告)号:US5319977A

    公开(公告)日:1994-06-14

    申请号:US718234

    申请日:1991-06-20

    摘要: An acoustic microscope assembly for atomic level inspection of a target object includes a cantilever arm with a sharp tip on its lower surface and a zinc oxide piezoelectric thin film on its upper surface. High frequency excitation signals, having a frequency of at least 50 Megahertz, are applied to the piezoelectric thin film so as to generate high frequency acoustic signals that are transmitted through the sharp tip so as to impact on a target object. The assembly can either receive acoustic signals reflected by the target object, or it can receive acoustic signals that have propagated through the target object. One method of using this assembly is to apply a continuous wave signal to the piezoelectric thin film while scanning the target object, and measuring characteristics of the target object at various positions thereof by measuring the resonant frequency of the transmitted high frequency acoustic signals. Other methods include pulsed operation, and combining acoustic measurements with atomic force measurements and/or tunneling current measurements to characterize a target object. The acoustic microscope assembly can also be used for storing information on a substrate, by deforming the substrate at selected positions, and for reading such stored information by determining which positions on a substrate have been deformed.

    摘要翻译: 用于目标物体的原子级检查的声学显微镜组件包括在其下表面具有尖锐尖端的悬臂和在其上表面上的氧化锌压电薄膜。 将具有至少50兆赫兹频率的高频激励信号施加到压电薄膜上,以便产生通过尖尖传输以便对目标物体产生影响的高频声信号。 组件可以接收由目标对象反射的声信号,或者它可以接收已传播通过目标对象的声信号。 使用该组件的一种方法是在扫描目标物体的同时向压电薄膜施加连续波信号,并且通过测量发射的高频声信号的谐振频率来测量其各个位置处的目标物体的特性。 其他方法包括脉冲操作,以及将声学测量与原子力测量和/或隧道电流测量结合以表征目标对象。 声学显微镜组件还可以用于在基板上存储信息,通过使基板在选定位置变形,并且通过确定基板上的哪些位置已经变形来读取这些存储的信息。

    Techniques for improving droplet uniformity in acoustic ink printing
    8.
    发明授权
    Techniques for improving droplet uniformity in acoustic ink printing 失效
    提高声墨印刷液滴均匀性的技术

    公开(公告)号:US5389956A

    公开(公告)日:1995-02-14

    申请号:US931804

    申请日:1992-08-18

    IPC分类号: B41J2/015 B41J2/14 B41J2/04

    CPC分类号: B41J2/14008

    摘要: Techniques for improving droplet uniformity in acoustic ink printing. Row to row variations in an average droplet characteristic are reduced by controlling the electric power applied to the droplet ejectors of the individual rows. By applying the proper power to each row, the average droplet characteristic from the individual rows are made substantially. Another technique varies the efficiency of the individual droplet ejectors by physically trimming (such as with a laser) one or more of its components. Trimming may be performed on a droplet ejector's transducer, varactor, one or more associated resistors, or one or more capacitors. Yet another technique controls droplet ejector efficiency by electrically controlling the capacitance of a varactor associated with each droplet ejector, and thus each droplet ejector's efficiency. The voltage applied to each varactor may be controlled as a function of its column (to improve column to column uniformity), row (to improve row to row uniformity) or as a function of its column and row (to control the efficiency of the individual droplet ejector).

    摘要翻译: 提高声墨印刷液滴均匀性的技术。 通过控制施加到各行的液滴喷射器的电力来减小平均液滴特性中的行排列变化。 通过对每行施加适当的功率,基本上实现来自各行的平均液滴特性。 另一种技术通过物理地修整(例如用激光)其一个或多个组件来改变各个液滴喷射器的效率。 可以在液滴喷射器的换能器,变容二极管,一个或多个相关联的电阻器或一个或多个电容器上执行修整。 另一种技术通过电控制与每个液滴喷射器相关联的变容二极管的电容以及因此每个液滴喷射器的效率来控制液滴喷射器的效率。 施加到每个变容二极管的电压可以作为其列的函数来控制(以提高列到列的均匀性),行(以提高行到行均匀性)或者作为其列和行的函数(以控制个体的效率 液滴喷射器)。

    Acoustic ink printhead
    9.
    发明授权
    Acoustic ink printhead 失效
    声墨打印头

    公开(公告)号:US5339101A

    公开(公告)日:1994-08-16

    申请号:US815730

    申请日:1991-12-30

    IPC分类号: B41J2/015 B41J2/14 G01D15/16

    摘要: A printhead for an acoustic ink printer has a piezoelectric transducer on one surface of a substrate. A layer of a dielectric material is provided on the surface of the transducer away from the substrate. A Fresnel lens is formed in the surface of the dielectric layer away from the transducer, for focusing sound energy near the surface of a body of ink adjacent the dielectric layer. Thus the transducer and lens are both on the same side of the substrate. A pit may be formed in the substrate under the transducer. The transducer may be a body of piezoelectric material sandwiched between a pair of electrodes, the lower electrode of which has a thickness that is a quarter wave at the excitation frequency of the transducer. An anti-reflective coating may be provided on the lower surface of the substrate, with a body of an absorptive material abutting the anti-reflective layer, or an absorptive material having an acoustic impedance approximately matching that of the substrate may be coated on the lower surface of the substrate.

    摘要翻译: 用于声学墨水打印机的打印头在基板的一个表面上具有压电换能器。 介电材料层设置在远离基板的换能器表面上。 在电介质层的表面上形成菲涅尔透镜,远离换能器,用于将声能聚焦在靠近电介质层的墨体表面附近。 因此,传感器和透镜都在基板的相同侧上。 可以在换能器下方的基板中形成凹坑。 换能器可以是夹在一对电极之间的压电材料体,其下电极具有在换能器的激发频率下的四分之一波长的厚度。 可以在基板的下表面上设置抗反射涂层,吸收材料的主体邻接抗反射层,或者具有与基板大致匹配的声阻抗的吸收材料可以涂覆在下部 基板的表面。