摘要:
The free ink surface levels of acoustic ink printers are controlled by cap structures that have substantially non-retroreflective aperture configurations. The non-retroreflective configurations of the apertures of these cap structures cause diffusive scattering or directional deflection of the reflected surface ripple waves, thereby significantly reducing the time that is required for the oscillatory perturbations, which are caused by reflection of the surface ripple waves that are generated during the droplet ejection process, to dissipate to a negligibly low amplitude in the critical local areas of the ejection sites. This, in turn, increases the droplet ejection rates at which printers having such cap structures can be operated asynchronously.
摘要:
In accordance with the present invention, an acoustic ink printer comprises a pool of liquid ink having a free surface in intimate contact with the inner face of a perforated membrane. The printer addresses all pixel positions within its image field via substantially uniform, relatively large diameter apertures which extend through the membrane on centers that are aligned with respective ones of the pixel positions. In operation, one or more focused acoustic beams selectively eject individual droplets of ink from the ink menisci that extend across the apertures. Accordingly, the membrane is positioned and the bias pressure that is applied to the ink is selected so that the menisci essentially remain within the focal plane of such beam or beams.
摘要:
Acoustically thin capping structures and acoustic droplet ejectors having fluid wells and which use such capping structures to create fluid cells. The inventive capping structures permit the accurate positioning of the free surface of a fluid, permit acoustically induced fluid droplet ejection, and prevent fluid from spilling from the fluid wells. "Acoustically thin" means that the thickness of the capping structure is small enough that the acoustic energy that is lost passing through the capping structure is less than 50% of the incident acoustic energy.
摘要:
This invention is an acoustic ink printer. It has a pool of ink (33) with a free surface (36). Underneath the ink is a print head (10) which has droplet ejectors (14) for irradiating the free surface (36) of the pool of ink (33) with focused acoustic radiation (44). Over the free surface (36) of the pool of ink (33) is a membrane (16), with one or more apertures (20) aligned with the droplet ejectors (14), in intimate contact with the free surface (36) of the pool of ink (33). The apertures 20 are substantially larger than the waist diameter (46) of the focused acoustic radiation (44). An external pressure source (50) maintains the meniscus (48) of the pool of ink (33) substantially in the focal plane (52) of the focused acoustic radiation (44) during operation of the droplet ejectors (14). A piezoelectric crystal (24) is in intimate contact with the pool of ink (33). An electrical signal source (32) energizes the piezoelectric crystal (24) in order to apply a pressure signal (54) on demand to the pool of ink (33) during operation of the droplet ejectors (14). The different pressure signals (54) resulting from application of different electrical signals (29) to the piezoelectric crystal (24) can be utilized to eject individual droplets (38) of ink (33) from the free surface (34) of the ink (33) on demand, or to effect finer control over the free surface (34) of the ink (33) than is possible with the external pressure source (50) by itself.
摘要:
The invention relates to a multi-layered piezoelectric acoustic transducer for generating layers of the same piezoelectric material are provided such tool alternate layers have different crystallographic orientations and different piezoelectric coupling coefficients. The layers may be provided so that alternate layers have crystallographic orientations which provide maximum electro-acoustic coupling and layers which provide minimum electro-acoustic coupling.
摘要:
A material deposition head having lithographically defined ejector units. Beneficially, each ejector unit includes a plurality of lithographically defined droplet ejectors. Furthermore, methods of fabricating such lithographically defined material deposition heads are also described.
摘要:
An acoustic microscope assembly for atomic level inspection of a target object includes a cantilever arm with a sharp tip on its lower surface and a zinc oxide piezoelectric thin film on its upper surface. High frequency excitation signals, having a frequency of at least 50 Megahertz, are applied to the piezoelectric thin film so as to generate high frequency acoustic signals that are transmitted through the sharp tip so as to impact on a target object. The assembly can either receive acoustic signals reflected by the target object, or it can receive acoustic signals that have propagated through the target object. One method of using this assembly is to apply a continuous wave signal to the piezoelectric thin film while scanning the target object, and measuring characteristics of the target object at various positions thereof by measuring the resonant frequency of the transmitted high frequency acoustic signals. Other methods include pulsed operation, and combining acoustic measurements with atomic force measurements and/or tunneling current measurements to characterize a target object. The acoustic microscope assembly can also be used for storing information on a substrate, by deforming the substrate at selected positions, and for reading such stored information by determining which positions on a substrate have been deformed.
摘要:
Techniques for improving droplet uniformity in acoustic ink printing. Row to row variations in an average droplet characteristic are reduced by controlling the electric power applied to the droplet ejectors of the individual rows. By applying the proper power to each row, the average droplet characteristic from the individual rows are made substantially. Another technique varies the efficiency of the individual droplet ejectors by physically trimming (such as with a laser) one or more of its components. Trimming may be performed on a droplet ejector's transducer, varactor, one or more associated resistors, or one or more capacitors. Yet another technique controls droplet ejector efficiency by electrically controlling the capacitance of a varactor associated with each droplet ejector, and thus each droplet ejector's efficiency. The voltage applied to each varactor may be controlled as a function of its column (to improve column to column uniformity), row (to improve row to row uniformity) or as a function of its column and row (to control the efficiency of the individual droplet ejector).
摘要:
A printhead for an acoustic ink printer has a piezoelectric transducer on one surface of a substrate. A layer of a dielectric material is provided on the surface of the transducer away from the substrate. A Fresnel lens is formed in the surface of the dielectric layer away from the transducer, for focusing sound energy near the surface of a body of ink adjacent the dielectric layer. Thus the transducer and lens are both on the same side of the substrate. A pit may be formed in the substrate under the transducer. The transducer may be a body of piezoelectric material sandwiched between a pair of electrodes, the lower electrode of which has a thickness that is a quarter wave at the excitation frequency of the transducer. An anti-reflective coating may be provided on the lower surface of the substrate, with a body of an absorptive material abutting the anti-reflective layer, or an absorptive material having an acoustic impedance approximately matching that of the substrate may be coated on the lower surface of the substrate.
摘要:
An acoustic ink printer transducer comprising a piezoelectric layer positioned between two suitable electrode materials. Also, a method for obtaining second harmonic operations from an acoustic ink printer transducer to enable ejection of a number of different ink droplet sizes from the acoustic ink printer thereby facilitating grey scale printing.