Abstract:
The present disclosure relates to a heat transfer tube including an inner surface and an outer surface. The heat transfer tube further includes a first mixing element and a second mixing element disposed on the inner surface of the tube and projecting inwardly toward a central longitudinal axis of the tube. Adjacent mixing elements are separated by a gap arc distance of about 0.5 inches (1.27 cm) or greater. The first helical row has an angle (Θ) from about 15 degrees to about 85 degrees relative to the central longitudinal axis of the tube. The tube has an inner diameter of about 1.85 inches (4.7 cm) or less.
Abstract:
The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
Abstract:
The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
Abstract:
A steam cracking process for converting hydrocarbons into smaller hydrocarbons, particularly olefins, in a tube reactor comprising a convection section, a cross-over section, and a radiant section. The process includes heating the fluid mixture inside the tube to a temperature at the end of the convection section where significant cracking occurs in the cross-over section. The high convection section and cross-over section temperatures allow for lower tube wall temperature in the radiant section resulting in less coke deposition on the inner wall of the tube, and hence extended run-lengths between adjacent decoking sessions.
Abstract:
A steam cracking process for converting hydrocarbons into smaller hydrocarbons, particularly olefins, in a tube reactor comprising a convection section, a cross-over section, and a radiant section. The process includes heating the fluid mixture inside the tube to a temperature at the end of the convection section where significant cracking occurs in the cross-over section. The high convection section and cross-over section temperatures allow for lower tube wall temperature in the radiant section resulting in less coke deposition on the inner wall of the tube, and hence extended run-lengths between adjacent decoking sessions.
Abstract:
The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
Abstract:
The invention relates a process for removing coke formed during steam-cracking of a hydrocarbon feed. The process includes providing a decoking feed to at least one radiant coil of a steam-cracking furnace under conditions to remove at least a portion of coke from the at least one radiant coil to form a decoking effluent. The decoking effluent is cooled with a liquid quench medium to provide an partially-quenched decoking effluent. The partially-quenched decoking effluent is cooled with a gaseous quench medium to provide a quenched effluent. An apparatus configured to perform such a process is also described.
Abstract:
The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
Abstract:
A burner sub-system, a furnace comprising the same, a fuel combustion process and steam cracking process carried out in the furnace. The burner sub-system comprises a barrier wall segment between the burner tip and the flue-gas recirculation (“FGR”) duct, effectively blocking direct gas flow between the burner tip and the FGR duct opening, but without encircling the whole burner tip. The presence of the partial barrier wall has the advantage of preventing the temperature inside the FGR duct from becoming too high, while achieving low NOx emissions from the combustion process without overheating the burner tip because of reduced amount of heat reflection to the burner tip compared to an annular barrier wall. The invention is particularly useful in furnaces where hydrogen-rich fuel gas is combusted.
Abstract:
A process for the decoking of a hydrocarbon steam cracking furnace having a firebox, radiant coils, a transfer line exchanger, and an oil quench connection wherein liquid quench oil is injected to directly cool the steam-cracked effluent. Decoking feed comprising steam and air is supplied to the furnace under conditions sufficient to at least partially combust coke accumulated on the interior of the radiant coils, the transfer line exchanger, and the quench connection. Quench steam is supplied and injected into the decoking process effluent in an amount sufficient to cool the decoking process effluent below the metallurgical temperature limit of downstream piping. Also, a pyrolysis furnace for the production of ethylene is also provided.